Paul Scherrer Institut
Timo Korhonen
Modern system architectures in embedded systems

ICALEPCS 2011
• Outline

 – What is driving the technology?

 – Two most prominent trends

 – How can we take advantage of this?

 • Applications in embedded systems

 – Some being worked on, some imagined

 – Conclusions
• Technology drivers
 – The general IT and telecommunication industry always have their needs for
 • More computing power
 • Most efficient use of the infrastructure
 – Many (but not all) of the technology push comes from there
 • This becomes the technology base for us
• Trend 1: drive towards parallel processing
 – CPU frequencies are not rising any more
 – Speed through parallelization
 • There are a number of variations to this.
 • The most obvious: adding CPU cores

Parallel processing has been around for quite some time, but now we too have to care about it!
• The ultimate in parallel processing:

 – Many talks in this conference have shown the use of FPGAs as computing engines
 • Mathematical operations, DSP, image processing, data reduction to name a few
 • Real applications, not just glue logic

 – Ultimate parallelism to really fine-grained level

 – A few drawbacks, however:
 • Development cycle long
 – Abstraction level of tools is still low
 • Toolsets – at vendor’s mercy
 – A full open source toolchain would be great (although not too likely to happen)
• Parallelism on a coarser level
 – Multi-core CPUs
 – This is datacenter technology but is everywhere
 • Unavoidable, even if one wanted to...
 – Better to study and take advantage of it
 – Has its advantages:
 • Lightweight (relatively)
 – Faster development cycle
 – Mainstream OS support
 – But is not without a catch:
 • Real-time systems have to be looked at closely
 • Timing behaviour, deadlocks,...
 – Very little attention so far
 » Some contributions in this conference
• Multi-core variants
 - Homogenous
 • Many identical processors
 - Heterogenous
 • Diverse cores (DSP, GPU)
 • Can be very interesting for embedded applications
 - Task partitioning important
• OS & library support

Freescale QorIQ

TI OMAP
• Interconnects (fast serial links)
 – Needed (also) for efficient parallelism
 • Multi-drop bus scales badly with multicore
 • Point-to-point, data plane
 • Also message passing
 – Serial links are everywhere
 • Ethernet & PCI express are the dominant protocols
 • Custom protocols sometimes needed but are a challenge for integration
 – Mastering these technologies is essential
 • Needed to take advantage of parallelism
 • Makes the whole scene interesting
Trend 2: Virtualization

- another datacenter trend
- Efficient use of hardware
 - Reduce number of idling CPUs
- Even more pressing needs:
 - Maintenance
 - Fewer servers to look after
 - Management
 - Start, stop, move servers around (high availability)
- Cooling, etc. infrastructure
- This all applies to embedded systems, too!
 - Or, at least could apply
• Support for parallelism has not been the main driver for virtualization but it is needed to take advantage of multicore parallelism
 – Symmetric multiprocessing does not scale well to very large number of cores
 – Could open up interesting possibilities (examples later)
 – Speciality: I/O Virtualization
 • Hardware implementation of hypervisor function
 • Guest OS gets direct access to hardware
 • Removes bottlenecks due to software intervention
 • Part of general trend to move virtualization support to hardware
• Three selected applications

 – To illustrate how these things may affect us

 – Real and imaginary

• None of these is in real use yet – some of them may never be
• Applications (1)
 – Data streaming and processing in a fast (local) feedback system (LLRF)
 • demonstrates
 – Parallelization
 – Use of fast interconnects
 – Use of multi-core separate functions
 – We (Controls & Low-level RF groups at PSI) are actually working on this
 • First prototypes expected early next year
Analog data in (250 MSPS, 16 bits) (20 channels, 10 Gbyte/sec in total)

Analog data out

Feedback processing

FPGA

CPU (core 1)

CPU (core 2)

RAM

PCle

Ethernet/Channel Access
This is real... our new platform: IFC_1210

IOxOS SA & PSI co-development
- Plugs in a normal VME64x crate
- PCI express (two 4x lanes) & GTX serial links through P0
- Dual FMC (XMC,PMC) carrier
- Details see www.ioxos.ch
• Applications
 - Striping data acquisition
 - Fast (imaging) detector and (image) processing
 - Parallelism with multiple cores
 - Serial interconnects
 - Use of I/O virtualization for load sharing
 » Improves efficiency
 - (imaginary - we might do this but are not doing at the moment)
Multicore server processing large volume data
- Too fast for a single core
- Data striped, processed and stored to disk
- Merge with e.g. pulse number (X-ray FEL)

Accelerator data
- Pulse id
- Beam parameters
• Applications: centralize I/O processing
 – Virtualization of front-end I/O
 – Maintainability
 • System updates
 • CPU power allocation
 – Totally changes the landscape...
 – Frontend equipment can be made thin
 – Cooling, power, monitoring
 – No CPU mandatory
 – Imagination is the limit...
Virtual system (IOC) images

Long-distance links (PCI express)

PCIe switch

Processing servers can be remote
- Even real-time
- Processing power can be allocated where needed
- Redundancy (hardware still has to replaced on-site when broken)

I/O systems (VME/cPCIe/xTCA/...)
Conclusions

- Trends hit us, if we want it or not
 - Mastering the technologies is important
 - parallelism
 - Interconnect protocol is the key to integration
- These trends can (and will) change how we do things
 - That’s what keeps us busy... and why this is a great field to be in!
Thank you for your attention!