The ATLAS Detector Control System

Dr. Stefan Schlenker
CERN Geneva

for the ATLAS DCS Community
The ATLAS Detector

- Largest of four LHC experiments
- 7000 tonnes, ~100 million read-out channels, 3000 km of cables
- Contains 11 sub-detectors of different technologies in layer structure
- Built and operated by collaboration of >3000 physicists
- Operation with collisions since end 2009
The ATLAS Detector

- Largest of four LHC experiments
- 7000 tonnes, ~100 million read-out channels, 3000 km of cables
- Contains 11 sub-detectors of different technologies in layer structure
- Built and operated by collaboration of >3000 physicists
- Operation with collisions since end 2009
The ATLAS Detector

- Largest of four LHC experiments
- 7000 tonnes, ~100 million read-out channels, 3000 km of cables
- Contains 11 sub-detectors of different technologies in layer structure
- Built and operated by collaboration of >3000 physicists
- Operation with collisions since end 2009
The ATLAS Detector

- Largest of four LHC experiments
- 7000 tonnes, ~100 million read-out channels, 3000 km of cables
- Contains 11 sub-detectors of different technologies in layer structure
- Built and operated by collaboration of >3000 physicists
- Operation with collisions since end 2009
DCS Architecture

- Facilitate management of implementation, operation and maintenance by using standard building blocks

 Joint Controls Project

- Controls hierarchy:
 1. Front-End (FE): detector interface
 2. Local Back-End (BE): FE connection, readout, processing
 3. Sub-detector BE: grouping different technologies, standalone operation
 4. Global BE: interfaces to operators, storage and external facilities
DCS Front-End Components

- **Industrial Power Supplies & Crates**
 (CAEN, Wiener, ISEG),
 read out and controlled via CAN/Ethernet
- Few **PLCs** read out via Mod-bus (managed by CERN infrastructure)
- Custom built low-cost I/O concentrator: **Embedded Local Monitoring Board**
 - 64 analog inputs (16-bit ADC) and 32 digital I/O channels
 - ATmega128 microcontroller (8 bits, 4 MHz)
 - CAN controller for communication over field-bus
 - Powered by custom power supply via CAN bus (or hosting board)
 - Modular, remotely upgradable firmware
 - CANopen OPC server for communication with back-end
 - Radiation hard up to 50 Gy, tolerant to magnetic field >1.4T
 - More than 5000 ELMBs in use in ATLAS (detector, counting rooms), >10k LHC-wide
DCS Back-End

Components and Usage

- Front-End interfaced to individual control stations (server PCs), Windows/Linux
- Stations run SCADA software PVSS II (Siemens), allows distribution of applications
- Data exchanged via OPC (standard), Modbus (PLCs), DIM (anything else)
- Conditions data can be streamed to relational database (Oracle)
- Low level alarm system for individual parameters crossing thresholds
Back-End Integration

Sub-systems
- Distributed system of >130 stations in private network
- Control applications implemented by ~50 different sub-system developers based on event driven processing of >10^7 data elements

External Systems
- Information servers dedicated to communication with external controls systems (Safety, Magnets, Cryo, Gas, Cooling,..., LHC)
- Middleware: JCOP

Scaling Behavior
- Hierarchy approach pays off
- PVSS scaling becomes an issue on global level (influencing next version...)

<table>
<thead>
<tr>
<th>System</th>
<th>Component</th>
<th># Servers (Appl.)</th>
<th># Archived Parameters</th>
<th>Total # Parameters</th>
<th># FSM Objects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner Detector</td>
<td>Pixel</td>
<td>11(12)</td>
<td>57k</td>
<td>1'086k</td>
<td>9.1k</td>
</tr>
<tr>
<td></td>
<td>Silicon strips</td>
<td>11(11)</td>
<td>106k</td>
<td>1'265k</td>
<td>14.7k</td>
</tr>
<tr>
<td></td>
<td>Transit. radiation</td>
<td>11(11)</td>
<td>69k</td>
<td>123k</td>
<td>13k</td>
</tr>
<tr>
<td></td>
<td>Services</td>
<td>7(8)</td>
<td>16k</td>
<td>494k</td>
<td>3.7k</td>
</tr>
<tr>
<td>Calorimeters</td>
<td>Liquid Argon</td>
<td>13(13)</td>
<td>27k</td>
<td>910k</td>
<td>8.3k</td>
</tr>
<tr>
<td></td>
<td>Tile</td>
<td>5(5)</td>
<td>51k</td>
<td>719k</td>
<td>2.4k</td>
</tr>
<tr>
<td>Muon Spectrometer</td>
<td>Drift tubes</td>
<td>29(29)</td>
<td>214k</td>
<td>3'229k</td>
<td>19.2k</td>
</tr>
<tr>
<td></td>
<td>Cathode strip</td>
<td>2(2)</td>
<td>1.3k</td>
<td>109k</td>
<td>0.6k</td>
</tr>
<tr>
<td></td>
<td>Resistive plate</td>
<td>7(7)</td>
<td>139k</td>
<td>1'597k</td>
<td>2.5k</td>
</tr>
<tr>
<td></td>
<td>Thin gap</td>
<td>7(7)</td>
<td>81k</td>
<td>1'225k</td>
<td>10k</td>
</tr>
<tr>
<td></td>
<td>Services</td>
<td>2(2)</td>
<td>0.7k</td>
<td>55k</td>
<td>0.04k</td>
</tr>
<tr>
<td>Forward detectors</td>
<td></td>
<td>4(4)</td>
<td>4.9k</td>
<td>194k</td>
<td>0.9k</td>
</tr>
<tr>
<td>Common Services</td>
<td>Counting rooms</td>
<td>7(7)</td>
<td>23k</td>
<td>568k</td>
<td>4.7k</td>
</tr>
<tr>
<td></td>
<td>Trigger & DAQ</td>
<td>2(2)</td>
<td>11k</td>
<td>386k</td>
<td>1.3k</td>
</tr>
<tr>
<td></td>
<td>External+ safety</td>
<td>4(6)</td>
<td>8.0k</td>
<td>144k</td>
<td>0.4k</td>
</tr>
<tr>
<td></td>
<td>Global services</td>
<td>9(13)</td>
<td>1.2k</td>
<td>222k</td>
<td>0.4k</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>131(139)</td>
<td>809k</td>
<td>12.3M</td>
<td>91.2k</td>
</tr>
</tbody>
</table>
Back-End Integration

Sub-systems
- Distributed system of >130 stations in private network
- Control applications implemented by ~50 different sub-system developers based on event driven processing of >10^7 data elements

External Systems
- **Information servers** dedicated to communication with external controls systems (Safety, Magnets, Cryo, Gas, Cooling,…, LHC)
- **Middleware**: JCOP
 - **Data Interchange Protocol**

Scaling Behavior
- **Hierarchy approach pays off**
- **PVSS scaling becomes an issue on global level** (influencing next version…)

Table: System Components and Parameters

<table>
<thead>
<tr>
<th>System</th>
<th>Component</th>
<th># Servers (Appl.)</th>
<th># Archived Parameters</th>
<th>Total # Parameters</th>
<th># FSM Objects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner Detector</td>
<td>Pixel</td>
<td>11(12)</td>
<td>57k</td>
<td>1'086k</td>
<td>9.1k</td>
</tr>
<tr>
<td></td>
<td>Silicon strips</td>
<td>11(11)</td>
<td>106k</td>
<td>1'265k</td>
<td>14.7k</td>
</tr>
<tr>
<td></td>
<td>Transit. radiation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Services</td>
<td>7(8)</td>
<td>16k</td>
<td>494k</td>
<td>3.7k</td>
</tr>
<tr>
<td>Calorimeters</td>
<td>Liquid Argon</td>
<td>13(13)</td>
<td>27k</td>
<td>910k</td>
<td>8.3k</td>
</tr>
<tr>
<td></td>
<td>Tile</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muon Spectrometer</td>
<td>Drift tubes</td>
<td>29(29)</td>
<td>214k</td>
<td>3'229k</td>
<td>19.2k</td>
</tr>
<tr>
<td></td>
<td>Cathode strip</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resistive plate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thin gap</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Services</td>
<td>2(2)</td>
<td>0.7k</td>
<td>55k</td>
<td>0.04k</td>
</tr>
<tr>
<td>Forward detectors</td>
<td>Counting rooms</td>
<td>7(7)</td>
<td>23k</td>
<td>568k</td>
<td>4.7k</td>
</tr>
<tr>
<td></td>
<td>Trigger & DAQ</td>
<td>2(2)</td>
<td>11k</td>
<td>386k</td>
<td>1.3k</td>
</tr>
<tr>
<td>Common Services</td>
<td>External+ safety</td>
<td>4(6)</td>
<td>8.0k</td>
<td>144k</td>
<td>0.4k</td>
</tr>
<tr>
<td></td>
<td>Global services</td>
<td>9(13)</td>
<td>1.2k</td>
<td>222k</td>
<td>0.4k</td>
</tr>
</tbody>
</table>

Total: 131(139) servers, 809k parameters, 12.3M total parameters, 91.2k FSM objects
Back-End Integration

Sub-systems
- Distributed system of >130 stations in private network
- Control applications implemented by ~50 different sub-system developers based on event driven processing of >10^7 data elements

External Systems
- Information servers dedicated to communication with external controls systems (Safety, Magnets, Cryo, Gas, Cooling, ... LHC)
- Middleware: JCOP Data Interchange Protocol

Scaling Behavior
- Hierarchy approach pays off
- PVSS scaling becomes an issue on global level (influencing next version...)

Need for higher level architecture due to heterogeneity and complexity
State Machine Hierarchy

Reduce complexity!

- Detector control mapped to state machine hierarchy above SCADA layer

- Using J COP FSM software framework (C. GASPAR ET AL. 2006)

- Device States are propagated upwards using state rules, Commands propagated downwards

- Error handling upwards using parallel tree of Status objects linked to device alarms

- Allows for single operator
Reduce complexity!

- Detector control mapped to state machine hierarchy above SCADA layer
- Using JCOP FSM software framework (C. Gaspar et al. 2006)
- Device States are propagated upwards using state rules, Commands propagated downwards
- Error handling upwards using parallel tree of Status objects linked to device alarms
- Allows for single operator
State Machine Hierarchy

Reduce complexity!

- Detector control mapped to state machine hierarchy above SCADA layer
- Using JCOP FSM software framework (C. GASPAR ET AL. 2006)
- Device *States* are propagated upwards using state rules, *Commands* propagated downwards
- Error handling upwards using parallel tree of *Status* objects linked to device alarms
- Allows for single operator

Detector control mapped to state machine hierarchy above SCADA layer

Using JCOP FSM software framework (C. GASPAR ET AL. 2006)

Device *States* are propagated upwards using state rules, *Commands* propagated downwards

Error handling upwards using parallel tree of *Status* objects linked to device alarms

Allows for single operator
Operator Control

Human-Machine-Interfaces

► Alarm Screen enabling quick recognition and response to problems

► Homogeneous navigation through state machine hierarchy for operator with custom HMI

► Each state machine object has associated panel (synoptics, trends etc.)

► Access control mechanism fully synched with LDAP and shift management

► Web monitoring, no load on Back-End, history mode
Human-Machine-Interfaces

► Alarm Screen enabling quick recognition and response to problems

► Homogeneous navigation through state machine hierarchy for operator with custom HMI

► Each state machine object has associated panel (synoptics, trends etc.)

► Access control mechanism fully synched with LDAP and shift management

► Web monitoring, no load on Back-End, history mode
Data Management

Data Handling
- Use of Oracle databases (CERN IT services)
- Configuration DB: 1.6 GB
- Conditions DB: 6.6 GB/day, replicated for offline use
- Non-negligible maintenance

Data Access
- Directly from PVSS (trends, script-based) via OnlineDB
- Implemented dedicated web-based DCS Data Viewer (DDV)
 - DCS data access world-wide, can be embedded in any web-page
 - Generic approach allows use in other experiments (done in COMPASS)

![Diagram showing data management architecture]
Data Management

Data Handling
- Use of **Oracle databases** (CERN IT services)
- **Configuration DB:** 1.6 GB
- **Conditions DB:** 6.6 GB/day, replicated for offline use
- Non-negligible maintenance

Data Access
- Directly from PVSS (trends, script-based) via OnlineDB
- Implemented dedicated web-based **DCS Data Viewer (DDV)**
 - DCS data access world-wide, can be embedded in any web-page
 - Generic approach allows use in other experiments (done in COMPASS)
Automation of Data Taking

Example: Synchronization of DCS with LHC operation and physics run control

- Detector safety requires lower voltage levels during unstable beam conditions
- Communication with LHC control room using semi-automatic handshake procedure
- Detector state change automated, synchronization with DAQ run control system (trigger)
- Audible notifications from DCS to ease shift operation
- Beam backgrounds and luminosity monitored via DCS
Automation of Data Taking

Example: Synchronization of DCS with LHC operation and physics run control

- Detector safety requires lower voltage levels during unstable beam conditions
- Communication with LHC control room using semi-automatic handshake procedure
- Detector state change automated, synchronization with DAQ run control system (trigger)
- Audible notifications from DCS to ease shift operation
- Beam backgrounds and luminosity monitored via DCS
Automation of Data Taking

Example: Synchronization of DCS with LHC operation and physics run control

- Detector safety requires lower voltage levels during unstable beam conditions
- Communication with LHC control room using semi-automatic handshake procedure
- Detector state change automated, synchronization with DAQ run control system (trigger)
- Audible notifications from DCS to ease shift operation
- Beam backgrounds and luminosity monitored via DCS
Automation of Data Taking

Example: Synchronization of DCS with LHC operation and physics run control

- Detector safety requires lower voltage levels during unstable beam conditions
- Communication with LHC control room using semi-automatic handshake procedure
- Detector state change automated, synchronization with DAQ run control system (trigger)
- Audible notifications from DCS to ease shift operation
- Beam backgrounds and luminosity monitored via DCS
Automation of Data Taking

Example: Synchronization of DCS with LHC operation and physics run control

- Detector safety requires lower voltage levels during unstable beam conditions
- Communication with LHC control room using semi-automatic handshake procedure
- Detector state change automated, synchronization with DAQ run control system (trigger)
- Audible notifications from DCS to ease shift operation
- Beam backgrounds and luminosity monitored via DCS
Automation of Data Taking

Example: Synchronization of DCS with LHC operation and physics run control

- Detector safety requires lower voltage levels during unstable beam conditions
- Communication with LHC control room using semi-automatic handshake procedure
- Detector state change automated, synchronization with DAQ run control system (trigger)
- Audible notifications from DCS to ease shift operation
- Beam backgrounds and luminosity monitored via DCS
Automation of Data Taking

Example: Synchronization of DCS with LHC operation and physics run control

- Detector safety requires lower voltage levels during unstable beam conditions
- Communication with LHC control room using semi-automatic handshake procedure
- Detector state change automated, synchronization with DAQ run control system (trigger)
- Audible notifications from DCS to ease shift operation
- Beam backgrounds and luminosity monitored via DCS

ATLAS data taking efficiency 94%

DCS incredibly reliable so far
Maintenance & Operations

Tasks

► Operations-driven consolidation (problem recovery automation etc.)
► Building documentation: direct access from UIs to generic TWiki
► Routine hardware replacements (PCs, FE-BE interfaces)
 ► Replace PCI based solutions to USB/Ethernet
► Software maintenance (OS, security patches, PVSS, drivers etc.)
► Migration to Linux:
 ► Windows needs high administration effort, high security constraints
 ► Need to replace OPC standard: OPC Unified Architecture (under development for CANopen/ELMB, vendors interested)
► Development on test systems, production updates only in technical stops
 ► Large scale production mirror (software only)
 ► Small scale hardware setups
► Software organized in repository, versioning essential (SVN)
► Reduced manpower requires merging of expertise and responsibilities, time consuming!
Future Upgrades

Upgrade Constraints

► Higher luminosity need to increase radiation tolerance for cavern equipment by factor ~10

► ELMB successor: ELMB++, still in conception stage
 - Radiation hardness!
 - Backwards compatibility
 - Fix bugs, support new connectivity (Ethernet?) and users

► Phase I:
 - new Pixel Inner B-Layer (new powering, Cooling)
 - Fast Track Trigger (electronics)

► Phase II: Replace complete inner detector, needs at least complete new design of DCS Front-End

LHC Upgrade Schedule

2013
E = 6.5-7 TeV
L = 10^{34} cm^{-2}s^{-1}

2017
E = 7 TeV
L = 2 \times 10^{34} cm^{-2}s^{-1}

2021
E = 7 TeV
L = 5 \times 10^{34} cm^{-2}s^{-1}

CONSOLIDATION

MOPMS021, S. Kersten et al.
Summary

- Highly distributed control system using SCADA software PVSS scales well (10^7 parameters)
- Reducing complexity using hierarchical structure and state machine logic
- System proven to manage routine detector operation well
- Continuous consolidation and automation
- Preparation of future upgrade
Run Number: 152221, Event Number: 383185
Date: 2010-04-01 00:31:22 CEST

\[p_T(\mu^+) = 29 \text{ GeV} \]
\[\eta(\mu^+) = 0.66 \]
\[E_T^{\text{miss}} = 24 \text{ GeV} \]
\[M_T = 53 \text{ GeV} \]

W→μν candidate in 7 TeV collisions
It works!

Run Number: 152221, Event Number: 383185
Date: 2010-04-01 00:31:22 CEST

$p_T(\mu^+) = 29$ GeV
$\eta(\mu^+) = 0.66$
$E_T^{miss} = 24$ GeV
$M_T = 53$ GeV

$W \rightarrow \mu\nu$ candidate in 7 TeV collisions