Josh Cogan
Emanuel Strauss
Rainer Bartoldus
David Miller

For the ATLAS Collaboration
BASIC PROBLEM 1/2

- ATLAS trigger algorithms use the beam spot to maintain higher efficiency of interesting events
 - Beam spot: location and size of luminous region
 - Precise measurement of beam phase space at interaction point (IP)
 - Used for tracking algorithms and displaced vertices
 - Measure via distribution of charged particle vertices found from hits on ATLAS silicon detectors

We provide with errors:
- Ellipsoid Mean (xyz)
- Ellipsoid Width (xyz)
- Ellipsoid Tilt (xz, yz)
BASIC PROBLEM 2/2

- But, luminous region changes during a fill

- The High Level Trigger needs feedback!
 - “Software” trigger working on Linux server farm
Algorithmic:
• Vertex resolution ~25 μm, but beam spot < 20 μm
• Operate on the trigger farm: limited bandwidth and CPU
• Only one chance to use event
• One event has many vertices!

Commissioning:
• Not in the original design
• Like changing the engine in a moving car
• Takes stable beams to test full system and feedback

Communication:
• Calculating beam spot needs > 100,000 vertices for 1300 bunches
• 13,000 processes need to know beam spot
• Cannot read out entire detector at the hardware trigger rate
• Shouldn’t disrupt data taking
PILE UP VERTICES

- At current luminosities there are **15-20 vertices** per bunch crossing!
 - “Pile-up”
- Many vertices to fit! However...
- Computationally extremely expensive to reconstruct in real time
GENERAL SOLUTIONS

Algorithmic:
- High rate/quality of vertices
- Specialized resolution determination via “split vertex”
- Use pile up vertices as well
- Share bandwidth/CPU with other tracking intensive algorithms

Commissioning:
- Emulate online system for test and development
- LHC down time → test changes
- Special data taking calibration stream

Communication:
- Parallelize Parallelize Parallelize!
- **Fan In/Out** calculations’ input and output to central locations
- Piggy back on **event data**

Focus of this talk
SOLUTION OVERVIEW

LumiBlock: n. 60 second period of time with similar conditions in ATLAS DAQ. Often written LB

Fan Out

Beam spot

Trigger Farm

Fan In

Monitoring

\[
\begin{align*}
\langle x \rangle &= -26 \pm 0.049 \mu m \\
\langle y \rangle &= 1099 \pm 0.048 \mu m \\
\langle z \rangle &= -6066 \pm 65 \mu m \\
\langle \sigma_x \rangle &= 22 \pm 0.10 \mu m \\
\langle \sigma_y \rangle &= 20 \pm 0.10 \mu m \\
\langle \sigma_z \rangle &= 59,800 \pm 80 \mu m
\end{align*}
\]

Did the beam spot change?

Yes / No

Flow

- Event Data
- Monitoring
- Control
- Conditions
- Requests

Blocks

- Hardware
- Software

LHC
High Level Trigger

Use infrastructure of the High Level Trigger
- Runs on commercial H/W & Linux
- Reconstructs physics objects (jets, e-, ...)
- Executes trigger decisions
- Histograms monitoring quantities!
- Each processor takes \(\sim 50 \text{ ms} / \text{event} \)

- For each event the beam spot algorithm
 - Calculates vertices locations
 - Produces resolution primitives
 - Adds these to local histograms
High Level Trigger

Use infrastructure of the High Level Trigger
- Runs on commercial H/W & Linux
- Reconstructs physics objects (jets, e-, ...)
- Executes trigger decisions
- Histograms monitoring quantities!
- Each processor takes ~50 ms / event

- For each event the beam spot algorithm
 - Calculates vertices locations
 - Produces resolution primitives
 - Adds these to local histograms

Gatherer

Processes needs to cooperate!
- Need $O(10^5)$ vertices for a beam spot
- Each event/processor are independent
- Merge those histograms across farm

Over 6,000 processors: how to merge?
- Aggregate at rack and farm level
- Rack: merge ~240 processors
- Top: merge ~30 racks

Online Monitoring

Vertex histograms

Flow

- Event Data
- Monitoring
- Control
- Conditions
- Requests

Blocks

- Hardware
- Software

Pixel Hits

- Fragments
- Pixel Read-Out System

Central Trigger Processor

Data Fragment

ATLAS

1. Next event please
2. Hits on Silicon Detector

1. L1 Trigger Info
2. Time

LB = 1

LB = 2

LB = 3

LB = 4
Calculation

Histograms → Beam spot
- Input data now centralized
- Calculate beam spot from histograms
- Fit gaussians, calculate resolutions, ...
- Write values to file and send to LHC
- Is there a significant difference between current and nominal values?

Online Monitoring

Vertex histograms

Total Execution: 15 seconds

- Historical Archive
- Vertex plots
- Calc beam spot

Wakes up every minute

Flow
- Event Data
- Monitoring
- Control
- Conditions
- Requests

Blocks
- Hardware
- Software
Calculation

- Histograms → Beam spot
 - Input data now centralized
 - Calculate beam spot from histograms
 - Fit gaussians, calculate resolutions, ...
 - Write values to file and send to LHC
 - Is there a significant difference between current and nominal values?

Feedback

- 13,000 processes need new beam spot
 - They don't know their out-of-date yet!
 - Put new values in conditions DB
 - Invalidate old beam spot via event flow
 - This ensures reproducibility
 - Each process uses same values

Processes will fetch new beam spot from conditions database

Online Monitoring

- **Vertex histograms**
 - Historical Archive
 - 2. Vertex plots
 - 3. Calc beam spot
 - 4. Publish new beam spot
 - 5. Update HLT beam spot!
 - 6. New Beam spot
 - 7. Store new beam spot
 - 8. Your beam spot is out of date

Flow

- Event Data
- Monitoring
- Control
- Conditions
- Requests

Blocks

- Hardware
- Software

ATLAS

10/14/11
ICALEPCS2011
FEEDBACK CRITERIA

- Compare two sets of beam spot parameters
 - \textit{Current}: from histograms just out of \textbf{trigger farm}
 - \textit{Nominal}: from the last update--stored in conditions DB and used by the trigger farm for tracking algorithms

- Decide to update (feedback) if:
 1. Position offset > 10\% width
 2. Width offset > 10\% of itself
 3. Error on any measurement decreases by 50\%
 4. Nominal is invalid (and current is valid)

- Criteria are completely configurable!
 - Meet the needs of clients but easy to do better

We invalidate after beam dump
Conditions Database

Beam spot parameters

Once an update is triggered, there will be 13,000 identical queries on the DB within ~100 ms!

Oracle Conditions Database

IOV DB Service

Holds a local cache of the conditions data
- Can be told to drop / refresh data
- Uses CORAL layer to communicate with
 - Proxy, or directly to CORAL server
 - Both route to conditions DB on Oracle

Conditions DB Entries associate with
"Interval Of Validity"
- Query: "What's the beam spot at LB 5?"
- Writing an entry closes the previous Interval Of Validity

Flow
- Event Data
- Monitoring
- Control
- Conditions
- Requests

Blocks
- Hardware
- Software

Your beam spot is out of date

Command Handler

Central Trigger Processor

b-jet Trigger

Trigger Processor

Data Fragment
Conditions Database

Beam spot parameters

- Top Proxy
- CORAL ↔ Oracle
- Oracle Conditions Database
- Proxy
- Farm's Beam spot

IOV DB Service

Holds a local cache of the conditions data
- Can be told to drop / refresh data
- Uses CORAL layer to communicate with
 - Proxy, or directly to CORAL server
 - Both route to conditions DB on Oracle

Conditions DB Entries associate with “Interval Of Validity”
- Query: “What's the beam spot at LB 5?”
- Writing an entry closes the previous Interval Of Validity

CORAL Proxies

Nodes ask same question at same time
- Just like gathering, use a multiplex tree
- Each proxy looks like a server & client
- Whole tree capable of answering 10000's of identical request in ~10 ms

CORAL is a open server/client API
- High performance routing and caching
- Decouples HLT from DB engine
RESULTS: FEEDBACK 1/2

- Latency ~ 240 seconds: Analyzing event → feedback
 - 140 seconds: Gathering at fixed intervals
 - 60 seconds: Waiting for update at LB increase
 - 15 seconds: Fitting Gaussians, calculating beam spot
 - Could force updates but 5 minutes fast compared to beam

- Frequency of actual feedback. N.B. *not* periodic!
 - At **start of run** need to **bootstrap** (start from scratch)
 - Prevents large tracking errors in case beam moved significantly
 - Errors on the values drop rapidly as statistics grow
 - First update 5 minutes after data taking starts (*invalid before this*)
 - ~4 updates in first 25 minutes of data taking
 - During the fill, **beam changes slowly**
 - Emittance blow up, IP orbit variations …
 - ~1 update every few hours after bootstrap phase
RESULTS FEEDBACK: 2/2

- Process pause: ~10 ms to fetch new beam spot
 - Proxy tree & event time stagger → most don’t wait
 - No deadtime! No DAQ busy!
- Difference between current and nominal

![Graph showing luminous centroid and distance from nominal over time]

- Luminous Centroid Y Position [mm]
- Luminous Centroid Y Distance from Nominal [mm]

40 μm

10/14/11

ICALEPCS2011
LHC Configuration Page

04-Oct-2011 21:14:23
Fill #: 2182
Energy: 3500 GeV
l(B1): 1.76e+14
l(B2): 1.77e+14

<table>
<thead>
<tr>
<th>Accelerator Mode:</th>
<th>PROTON PHYSICS</th>
<th>Beam Mode:</th>
<th>STABLE BEAMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Filling Scheme:</td>
<td>50ns_1380b+1small_1318_39_1296_144bpi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active Hypercycle:</td>
<td>3.5TeV_10Aps_1m</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>ATLAS</th>
<th>ALICE</th>
<th>CMS</th>
<th>LHCb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta*</td>
<td>1.00 m</td>
<td>10.00 m</td>
<td>1.00 m</td>
<td>3.00 m</td>
</tr>
<tr>
<td>Crossing Angle (urad)</td>
<td>−120(V)</td>
<td>−80(V)</td>
<td>120(H)</td>
<td>−250(H)</td>
</tr>
<tr>
<td>Spectrometer Angle (urad)</td>
<td>no_value(V)</td>
<td>no_value(V)</td>
<td>no_value(H)</td>
<td></td>
</tr>
<tr>
<td>Beam Separation (mm)</td>
<td>0(H)</td>
<td>.3(H)</td>
<td>−.5(V)</td>
<td>−.08(V)</td>
</tr>
<tr>
<td>Expected Collisions per turn</td>
<td>1318</td>
<td>39</td>
<td>1318</td>
<td>1296</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>ATLAS</th>
<th>ALICE</th>
<th>CMS</th>
<th>LHCb</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPTX: deltaT of IP (B1–B2)</td>
<td>−0.03 ns</td>
<td>−0.07 ns</td>
<td>−0.06 ns</td>
<td>−0.11 ns</td>
</tr>
<tr>
<td>Luminous size (x,y) in um</td>
<td>19.6,20.7</td>
<td>−999.0,−999.0</td>
<td>19.1,13.8</td>
<td>44.2,45.1</td>
</tr>
<tr>
<td>Luminous size (z) in mm</td>
<td>55.0</td>
<td>−999.0</td>
<td>44.5</td>
<td>52.6</td>
</tr>
<tr>
<td>Lumi Centroid (x,y) in um</td>
<td>−49.1,1056.8</td>
<td>−999.0,−999.0</td>
<td>156.4,−674.2</td>
<td>465.5,−14.1</td>
</tr>
<tr>
<td>Lumi Centroid (z) in mm</td>
<td>−7.3</td>
<td>−999.0</td>
<td>7.9</td>
<td>6.6</td>
</tr>
<tr>
<td>Luminous Tilt in urads</td>
<td>−6.11,−60.37</td>
<td>−999.00,−999.00</td>
<td>105.43,205.42</td>
<td>−63.43,32.75</td>
</tr>
</tbody>
</table>
RESULTS: PHYSICS 1/2

- ATLAS b-jet triggers (dependent on beam spot)
 - High up time, fast bootstrap at beginning of fill
- Provided a plethora of data for beam studies
 - Follow position with sub micron statistical uncertainty

![Graph showing Luminous Centroid X Position and Width over time](image)
RESULTS: PHYSICS 2/2

- Measure position and width of each bunch (>1300)
- Needs high rate and devoted resolution calculation
- See unambiguous effects of beam-beam kicks on orbit
CONCLUSION

- Built a system to measure the beam spot
 - On the HLT in **near real** time with large rate
 - Measure position with $< 1 \mu m$ statistical uncertainty
- Feedback the answer to 13,000 processes
 - Sharp change across the LumiBlock boundary
 - So fast to update with **proxies, with no DAQ busy!**
 - Tracks beam parameter drifts within $2 \mu m$
- Provide new data for LHC development
 - Extremely **accurate per bunch** measurements
 - Trending during runs, after long stops, etc ...
BACK UPS

- Many distributions of LHC beam parameters
VERTEX DISTRIBUTIONS

ATLAS Operations
May 29 2011
LHC Fill: 1815
$\sqrt{s} = 7$ TeV
Online Primary Vertex

Gaussian Fit:
Mean = -0.046 ± < 0.001 mm
Raw Width = 0.049 ± < 0.001 mm

Number of Vertices

Vertex x [mm]

$\times 10^3$

$\times 10^3$

ATLAS Operations
May 29 2011
LHC Fill: 1815
$\sqrt{s} = 7$ TeV
Online Primary Vertex

Gaussian Fit:
Mean = 1.082 ± < 0.001 mm
Raw Width = 0.048 ± < 0.001 mm

Number of Vertices

Vertex y [mm]

ATLAS Operations
May 29 2011
LHC Fill: 1815
$\sqrt{s} = 7$ TeV
Online Primary Vertex

Gaussian Fit:
Mean = -4.594 ± 0.721 mm
Raw Width = 62.007 ± 2.138 mm

Number of Vertices

Vertex z [mm]
TILTS

ATLAS Operations
May 29 2011
LHC Fill: 1815
\(\sqrt{s} = 7 \text{ TeV} \)

Linear Fit:
Slope = -47.93 ± 0.34 μrad

Vertex y [mm]

-1.090 to 1.088

Vertex z [mm]

-80 to 80

ATLAS Operations
May 29 2011
LHC Fill: 1815
\(\sqrt{s} = 7 \text{ TeV} \)

Linear Fit:
Slope = -7.65 ± 0.34 μrad

Vertex x [mm]

-0.040 to -0.042

Vertex z [mm]

-80 to 80
D0 VS Φ

ATLAS Operations
May 29 2011
LHC Fill: 1815
$\sqrt{s} = 7$ TeV

Sinusoid Fit:
$x = -0.045 \pm <0.001$ mm

$y = 1.082 \pm <0.001$ mm
SPLIT VERTEX RESOLUTION VS NUMBER OF TRACKS

ATLAS Operations
May 29 2011
LHC Fill: 1815
\(\sqrt{s} = 7 \text{ TeV} \)

\(\Delta x \) Between Half Vertices [mm]

Average Number of Tracks per Half Vertex

\(\Delta y \) Between Half Vertices [mm]

Average Number of Tracks per Half Vertex

\(\Delta z \) Between Half Vertices [mm]

Average Number of Tracks per Half Vertex

ATLAS Operations
May 29 2011
LHC Fill: 1815
\(\sqrt{s} = 7 \text{ TeV} \)
RESOLUTION VS NUMBER OF TRACKS

ATLAS Preliminary
May 29, 2011
LHC Fill: 1815
$\sqrt{s} = 7$ TeV
$\int L dt = 38 \text{ pb}^{-1}$

- Beamspot Width, No Resolution Correction
- Beamspot Resolution
- Beamspot Width, Corrected for Resolution

Number of Tracks per Reconstructed Vertex
PER BUNCH POSITIONS

ATLAS Operations
May 29 2011 $\sqrt{s} = 7$ TeV
LHC Fill: 1815 Online Primary Vertex

ATLAS Operations
May 29 2011 $\sqrt{s} = 7$ TeV
LHC Fill: 1815 Online Primary Vertex

ATLAS Operations
May 29 2011 $\sqrt{s} = 7$ TeV
LHC Fill: 1815 Online Primary Vertex
PER BUNCH WIDTHS

ATLAS Operations

May 29 2011 \(\sqrt{s} = 7\) TeV
LHC Fill: 1815 Online Primary Vertex

Luminous x Width [mm]

Bunch Crossing Identifier

Luminous y Width [mm]

Bunch Crossing Identifier

Luminous z Width [mm]

Bunch Crossing Identifier
WHAT’S THE PROBLEM?

- ATLAS produces crap-tons of data!
- Wait, why?
 - Collisions are usually pretty “boring”
 - Inelastic scattering
 - Dijet production
 - W/Z/γ
 - ...
- Yesterday’s signal is today’s background and tomorrow’s noise
WHY SO MUCH DATA?

- Only rarely does something “interesting” happen

Diagram:
- Extra Large Dim.’s
- Higgs
- Super Symmetry
- Not imagined
- SMP

Legend:
- p
- BOOM
CONTEXT

- ATLAS one of several large detectors at LHC
- LHC delivers ~15 Million bunch crossing/second
 - Most collisions are “boring” and can be thrown out
 - Rare few could be a Higgs, black hole, SUSY etc.
- Recording all the data would be 20 TB/second!
 - Need to trigger data acquisition on interesting events