Centralised Coordinated Control to Protect the JET ITER-like Wall.

Adam Stephen and JET-EFDA Contributors*

ICALEPCS, 2011.

*See the Appendix of F. Romanelli et al., Proceedings of the 23rd IAEA Fusion Energy Conference 2010, Daejeon, Korea.
Acknowledgements

- Klaus-Dieter Zastrow (PIW project leader)
- PIW Team
 - Peter Lomas and Plasma Ops Group
 - Paul McCullen – JET Level-1.
 - CODAS
 - Diagnostic/Camera systems team.
 - Funded by EFDA & RCUK Energy Programme.
- MARTe

This work was supported by EURATOM and carried out within the framework of the European Fusion Development Agreement. The views and opinions expressed herein do not necessarily reflect those of the European Commission.
The Joint European Torus (JET)

Plasma physics closest to ITER

- Torus radius: 3.1 m
- Vacuum vessel: 3.96m high x 2.4m wide
- Plasma volume: 80 m³ - 100 m³
- Plasma current: up to 5 MA in present configuration
- Main confining field: up to 4 Tesla

Unique technical capabilities:
- Tritium
- Beryllium

⇒ Optimise the use of JET in support of ITER by making use of its unique capabilities
JET vessel 2005
Material for Plasma Facing Components

Carbon Fibre Composite Tiles (CFC)

- Low atomic number (minimise radiation losses)
- High power handling capacity (sublimation 4000K)
- Absorbs deuterium/tritium fuel.

Design for ITER: all-metal wall with Beryllium

ITER-like Wall project for JET: 4000 new tiles

Beryllium Tiles

- Low atomic number (minimise radiation losses)
- Reduced power handling capacity (melting pt 1560K)
- Reduced retention of fuel

Implications for the JET protection systems…
Detection Systems

- Plasma Fault Protection System (PFPS)
- Plant Enable Windows System
- Real-Time Plasma Protection (RTPP)
- Real-Time Central Controller (RTCC)
- Plasma Wall Load System (WALLS)
Detection Systems
• Plasma Fault Protection System (PFPS)
• Plant Enable Windows System
• Real-Time Plasma Protection (RTPP)
• Real-Time Central Controller (RTCC)

Real-time Controllers (local managers)
• Fuelling/Density (PDLM)
• Additional Heating
 • Neutral-Beam (NBLM)
 • Radio Frequency (RFLM)
 • Lower-Hybrid (LHLM)
• Plasma Position & Current Control (PPCC)
Protection Response

- Pulse Termination Network
- Global STOP to all systems
- System stops fixed in time
- No variation according to plasma state
- Possibility of high heat fluxes to wall components
• New Diagnostic Systems to detect faults
 – Pyrometers, IR Cameras + Real-time image processing (See M.Jouve, WEPMU018, this conference).
 – Vessel Thermal Map (See D.Alves, WEPMN014, this conference)
 – Walls plasma load upgrade

• Update real-time controllers to accept protection override commands, including PPCC (See A.Neto, MOPMU035, this conference)

• Real-Time Protection Sequencer (RTPS) – new system to adapt experimental controls to implement hotspot avoidance or else achieve a “soft landing”

• Separation of control (RTCC)/protection(RTPP) diagnostics and related central servers (RTGS E/P)
New Protection Logic

Stop Triggers link to Configurable Stop Responses

• Identify classes of protective response:
 – (A) Overheating (local/walls/divertor/global)
 • Reduce the heating, but avoid turning it off.
 • Move/shrink the plasma.
 • Adjust heating/fuelling `as required’.
 – (B) Magnetohydrodynamic (MHD) Instabilities.
 • Change plasma control scenario to avoid disruption
 – (C) Improved programmable ‘Fast’ and ‘Slow’ stops

• Link fault alarms to response actions.
• Allow for local protection, plus two escalated responses.
Local Protection

- Localised overheating?
- Known culprit? (1 PINI, 1 Antenna, 1 Klystron)

✦ Inhibit & continue

Local managers will rebalance the power demand.

If things get worse, stop safely.
Global Stop Response

2. Type of risk

1. Time / phase.

RTPS protection varies according to:

2. Class of response; PTN/RTPS/JTT

The MHD Stop Response is not a primary RTPS stop in this Pul.
1. Scenarios for each stop type.

2. Stop response = set of controls.

3. Controls define stepped transitions.
Plan:
Steady-state
52.5-57.4
Termination:
57.4-62.0
If event occurs any time in steady-state phase jump to 57.4
Secondary Stop Transitions

Some stops may `accelerate`, others continue to completion.

<table>
<thead>
<tr>
<th></th>
<th>Slow</th>
<th>Fast</th>
<th>MHD</th>
<th>MHD2</th>
<th>MCHS</th>
<th>DHS</th>
<th>MC+DHS</th>
<th>MhfSt</th>
<th>JTT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slow ></td>
<td>Slow</td>
<td>Slow</td>
<td>Slow</td>
<td>Slow</td>
<td>Slow</td>
<td>Slow</td>
<td>Slow</td>
<td>Slow</td>
<td>Slow</td>
</tr>
<tr>
<td></td>
<td>MHD</td>
<td>MHD2</td>
<td>MCHS</td>
<td>DHS</td>
<td>MC+DHS</td>
<td>MhfSt</td>
<td>JTT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fast ></td>
<td>Fast</td>
<td>Fast</td>
<td>Fast</td>
<td>Fast</td>
<td>Fast</td>
<td>Fast</td>
<td>Fast</td>
<td>Fast</td>
<td>Fast</td>
</tr>
<tr>
<td></td>
<td>MHD</td>
<td>MHD2</td>
<td>MCHS</td>
<td>DHS</td>
<td>MC+DHS</td>
<td>MhfSt</td>
<td>JTT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MHD ></td>
<td>Ignore</td>
<td>Ignore</td>
<td>Ignore</td>
<td>Ignore</td>
<td>Ignore</td>
<td>Ignore</td>
<td>Ignore</td>
<td>Ignore</td>
<td>Ignore</td>
</tr>
<tr>
<td>MHD2 ></td>
<td>Ignore</td>
<td>Ignore</td>
<td>Ignore</td>
<td>Ignore</td>
<td>Ignore</td>
<td>Ignore</td>
<td>Ignore</td>
<td>Ignore</td>
<td>Ignore</td>
</tr>
<tr>
<td>MCHS ></td>
<td>Ignore</td>
<td>Ignore</td>
<td>Ignore</td>
<td>Ignore</td>
<td>Ignore</td>
<td>Ignore</td>
<td>Ignore</td>
<td>Ignore</td>
<td>Ignore</td>
</tr>
<tr>
<td>DHS ></td>
<td>Ignore</td>
<td>Ignore</td>
<td>Ignore</td>
<td>Ignore</td>
<td>Ignore</td>
<td>Ignore</td>
<td>Ignore</td>
<td>Ignore</td>
<td>Ignore</td>
</tr>
<tr>
<td>MC+DHS ></td>
<td>Ignore</td>
<td>Ignore</td>
<td>Ignore</td>
<td>Ignore</td>
<td>Ignore</td>
<td>Ignore</td>
<td>Ignore</td>
<td>Ignore</td>
<td>Ignore</td>
</tr>
<tr>
<td>MhfSt ></td>
<td>Ignore</td>
<td>Ignore</td>
<td>Ignore</td>
<td>Ignore</td>
<td>Ignore</td>
<td>Ignore</td>
<td>Ignore</td>
<td>Ignore</td>
<td>Ignore</td>
</tr>
<tr>
<td>JTT ></td>
<td>Ignore</td>
<td>Ignore</td>
<td>Ignore</td>
<td>Ignore</td>
<td>Ignore</td>
<td>Ignore</td>
<td>Ignore</td>
<td>Ignore</td>
<td>Ignore</td>
</tr>
</tbody>
</table>
See A. Neto, THDAULT06, *this conference.*

1. Reusable modules for standard control application (state machine, data collection). Highly data driven application structure. Sophisticated object oriented/component based framework with 10+ years of control system experience.

2. Proven real-time performance.

3. Portable and highly modular: run unit tests on Linux, pluggable simulated inputs, rapidly evolve the design.

4. Strong interface to Level-1 MMI. Decouple compiled code from configuration programming. Strong authorisation and validation checks on changes. Highly visible parameters.

5. Application configuration ➔ Documentation

6. Growing community of MARTe experts – a very knowledgeable and helpful group.
RTPS Block Diagram

2ms cycle
RTPS Hardware Architecture

- VME system
- MVME5500 1GHz PowerPC 512MB RAM
- Digital IO
- Watchdog monitoring via pulse train
- Ethernet for slow control/data collection
- Real-time communication:
 - ATM segregated network for RT control
 - Low latency, high reliability
 - Fixed connections (permanent virtual circuits)
 - Fixed size datagrams with controlled version ID.
RTDN / MARTe
Same pattern.

• Functional blocks
• Smart Bus
 • Synchronisation
 • Data Coherency
• Commissioning/Campaigns interleaved.
• Logic tests with dry runs
• Ohmic plasmas
• Plasma light used to simulate high temperatures.
• Vessel Thermal Map alarms checked.
• RTPS stop responses demonstrated.
• Jump To Termination in plasma control JPN 80500.
Future Work

• Full commissioning and calibration of camera systems.
• Integrate control of heating systems.
• Expanded local protection.
• ‘Alternative control’?