Synchronously Driven Power Converter Controller Solution for MedAustron

Luka Šepetavc, Rok Tavčar, Jože Dedič, Cosylab d.d., Ljubljana, Slovenia
Johannes Gutleber, CERN, Geneva, Switzerland
Roland Moser, EBG MedAustron, Wiener Neustadt, Austria

MedAustron

MedAustron - ion beam cancer therapy and research centre in Wiener Neustadt, Austria.
- Clinical and non-clinical research
- Medical treatment of cancer
- Synchrotron based accelerator
- Protons and carbon ions

Cosylab and MedAustron work closely together on MedAustron Control System (MACS).

Power Converter Controller (PCC) Solution

- PCC controls 260 power converters (power supplies) in MedAustron’s accelerator
- Power converters deliver power to magnets, in order to steer, focus and extract the beam
- PCC applies output values to power converters and acquires measurements in precise points in time
- Integrated with the timing system for synchronous operation
- Controls power converters with an accuracy of 1 microsecond or better

Generic Design and Simplified Integration

- Front End Device hardware is generic and modular
 - Easy support for new types of power converter interfaces (only design a new baseboard)
 - FED board is generic and always stays the same
- Software support for power converters
 - New power converter type requires implementation of a new driver
 - API is fixed around the driver, implementation requires minimal effort
- API developed within the control system framework

Conclusion

- PCC allows control of arbitrary number of power converters
- Synchronous control with an accuracy of 1 us or better
- Simplified integration of new types of power converters

Technology Behind the Power Converter Controller

- Distributed system based on PXie crates and custom developed front end devices
- COTS PXie crates and controllers from National Instruments
 - PCC control system software is implemented in LabVIEW
 - Each crate can control up to 90 power converters
- Time-critical tasks handled by FPGA-based FlexRIO Module cards
 - Transmission of (output values) voltage levels to power converters
 - Acquisition and buffering of measurements
- Custom developed FlexRIO Adapter Module with generic optical interfaces
 - FlexRIO Adapter plugs into the FlexRIO Module
 - Provides 6 generic optical connectors to interface front-end devices
 - Custom designed real-time fibre link @ 100 Mbit/s

Front End Device (FED):

- Custom developed FPGA-based board which connects directly to the power converter
 - Optical interface, serial interface (RS-422), parallel UHPI, GPIOs
 - FED can be located a few hundred meters away from PXie crate
- Baseboard, DSP board
 - FED plugs onto a baseboard or DSP board
 - Baseboard provides additional connectors
 - In-house designed DSP board implements regulation logic