Shape Controller Upgrades for the JET ITER-like Wall

Overview
- Real-time system
 - MIMO controller
- Controls:
 - Current in poloidal field circuits
 - Plasma current
 - Plasma shape

JET Circuits
- 10 Poloidal field circuits
 - 9 controlled by shape controller
 - First line of defence against faults and limits implemented in SC

Control mode selection
- Control modes and values dynamically assigned
 - Pre-programmed time windows
 - Stopping event

Protection of the ITER Like Wall (PIW) Stopping Strategy
- JET upgraded to a new all metal wall
- Previously, upon the detection of a problem:
 - Set of global responses
 - Invariant with the experimental phase
 - Designed to maximise the likelihood of a safe plasma landing
 - mitigate conflict with the requirement of avoiding localised heat fluxes in the wall components
- Upgraded system capable of dynamically adapting its response behaviour:
 - Accordingly to the experimental conditions at the time of the stop request
 - During the termination itself
 - Capable of switching to alternative experimental sequence if resources not available
- Triggered by the new Real-time Protection Sequencer (RTPS)
 - Responds to alarm requests from the Vessel Thermal Map (VTM)
 - Communicates using the ATM real-time data network

PFX On Early Task (POET)
- PFGC P1E generates and controls plasma current
 - 400 MW fly-wheel generator
 - Hardware switches (s1 and s4) enable current in both directions
 - PFX drives current in central pancakes windings
 - Reduce stray fields
 - More D shaped plasma
 - Current in PFX inhibited by shape controller...
 - While current in P1E is of opposite sign
 - Electromechanical modelling effort concluded that the old limits are too stringent
 - POET operation space allows limited PFX current with P1E current in the opposite direction

Current Limit Avoidance
- extreme Shape Controller (XSC) algorithm enables the control of the full plasma boundary
 - System is no longer limited to the accurate control of only a few gaps
 - All the circuits in shape controller are set to proportional current control
 - Current references provided by the XSC algorithm
 - Algorithm is valid only around a given equilibrium
 - Plasma must be driven into the reference conditions using shape controller
 - Current Limit Avoidance (CLA) uses the redundancy of the PF coil system
 - Automatically obtains almost the same plasma reference shape
 - With a different combination of currents in the PF coils
 - In the presence of severe disturbances
 - tries to avoid the current saturations
 - By relaxing the plasma shape constraints

This work was supported by the European Communities under the contract of Association between EURATOM and was carried out within the framework of the European Fusion Development Agreement. See the Appendix of F. Romaniello et al., Proceedings of the 23rd IAEA Fusion Energy Conference 2010, Daegu, Korea. The views and opinions expressed herein do not necessarily reflect those of the European Commission.