A digital Base-band RF Control System*

M. Konrad, U. Bonnes, C. Burandt, R. Eichhorn, J. Enders, N. Pietralla
Institut für Kernphysik, Technische Universität Darmstadt, Germany

S-DALINAC

- Design Energy: 130 MeV
- Duty cycle: CW
- Max. beam current: 60 µA
- Superconducting Cavities: 3
- Frequency: 2.9975 GHz
- Q-factor: 3-10^4

FPGA and Soft CPU

- Self-developed soft CPU implemented in the FPGA executes a program representing the control algorithm
- ALU uses 18 bit operands (full resolution of the ADCs)
- Two-staged pipeline
-CORDIC blocks transform from Cartesian coordinates to polar and back (pipelined as well)
- 36 bit accumulating registers for integral controllers
- CPU runs at 80 MHz, 1 µs latency caused by control algorithm
- Parameters are read-only for the soft CPU but read/write for the micro-controller
- Variables (intermediary results) are read/write for the soft CPU but read-only for the micro-controller

Advantages:
- All variables are stored in fixed registers (simplifies diagnostics)
- No synthesis of the Verilog code necessary after the control algorithm has been changed
- Control algorithm can be changed during operation

Diagnostics

- Eight controller boards in one crate
- Concentrator card collects data from the controller boards and streams signals to the PC via USB 2.0
 - Eight signals with 16 bits at full sampling rate of 1 MS/s
 - Two LSb of the full 18 bits are available as separate channels
 - All 64 signals of all 16 controller cards at a sampling rate of 2 kHz over separate USB interface
 - Coupling of two crates possible for common read-out
 - Data can be streamed to clients over the network
 - Software oscilloscope
 - Software spectrum analyzer
 - IOC provides mean values and online RMS errors of magnitude and phase

Control Algorithm

- Different control algorithms are necessary
 - Generator-Driven Resonator for normal-conducting cavities
 - Self-Excited Loop for supercond. cavities (see figure)

Hardware

In-house developed RF and controller boards

Slow Control

- Micro-controller runs Nut/OS
- Controller boards send commands directly to tuner power supplies
- EPICS IOC on standard PC
- Self-developed device support uses SocketCAN network stack
- Operator interface implemented with Control System Studio (Synoptic Display Studio)

Deployment

- Use Debian Fully Automatic Installation to setup the PC (takes about 30 minutes)
- Update firmware and FPGA bitstream via CAN bus
- Bootloader allows firmware update even if firmware of device is broken
- FPGA multiboot functionality provides fall-back to "golden" image if primary bitstream is broken

Summary

- System has replaced old analog RF control system completely
- Accuracy achieved so far: mag. 7·10^{-4} rms, 0.7° rms
- Soft CPU allows fast modification of the control algorithm as well as powerful diagnostics
- Highly automatized deployment allows continuous integration of improvements

*Work supported by DFG through CRC 634
k Conrad@ikp.tu-darmstadt.de