FPGA Mezzanine Cards for CERN’s Accelerator Control System
Plus some reflections on Open Hardware

J. Serrano

BE-CO Hardware and Timing section
CERN

ICALEPCS 2009
Outline

1 Introduction
2 The FMC standard
3 CERN’s implementation
4 Open Hardware
Outline

1. Introduction
2. The FMC standard
3. CERN’s implementation
4. Open Hardware
CERN’s BE Controls group supports a kit of standard hardware modules.

Support includes stocks management, help in debugging and low level software:
- Linux Device Drivers.
- C/C++ libraries with usage examples.
- Test programs for drivers and libraries.

With the injectors renovation project, supported platforms will include PCI and PCIe in addition to VME.

A carrier/mezzanine strategy has been adopted.
Carrier/mezzanine approach

Courtesy of VITA: http://www.vita.com/fmc.html
Advantages of the carrier/mezzanine approach

Re-use
One mezzanine can be used in VME, PCI and PCIe carriers.

Reactiveness
No need to place and route a complex FPGA PCB for every new user need.

Rational split of work
Controls can design the carrier, Instrumentation an ADC mezzanine, RF a DDS one, etc.
Outline

1. Introduction
2. The FMC standard
3. CERN’s implementation
4. Open Hardware
Outline

Introduction
The FMC standard
CERN's implementation
Open Hardware
Summary

Courtesy of VITA: http://www.vita.com/fmc.html
Connectors

- Ball Grid Array (BGA) characterized for high bandwidth applications.
- Low Pin Count (LPC) and High Pin Count (HPC) variants with 160 and 400 contacts respectively.
Pin function, sense – input or output – and electrical standard are defined at FPGA configuration time.

Carrier reads FMC identity through an I2C serial bus and configures the FPGA accordingly.
Physical Dimensions

- Small dimensions for thermal reasons.
- Keep all digital circuitry in the carrier.
- Use FMC for front panel connectors and analog.
Outline

1. Introduction
2. The FMC standard
3. CERN’s implementation
4. Open Hardware
载体设计

载体设计包括电源、VME接口、DDR内存、EEPROM内存、ZBT内存、以太网接口、时钟生成、DDR内存系统、FPGA、EEPROM内存应用、FPGA、ZBT内存和FMC连接器。所有模块通过FPGA Mezzanine Cards for CERN's Accelerator Control System。
Ongoing developments

Carriers with timing (White Rabbit) support
- VME with two single-width (one double-width) slots.
- PCIe with one single-width slot.

Mezzanines
- Two-channel 100 Ms/s ADC with oscilloscope-type analog front end.
- Four-channel 10 Ms/s programmable Analog Waveform Generator.
Use cases

Distributed oscilloscope

Distributed feedback system
Outline

1. Introduction
2. The FMC standard
3. CERN’s implementation
4. Open Hardware
Advantages

Peer review
Get your design reviewed by experts all around the world, including companies!

Design re-use
How many people are designing a 100 Ms/s ADC independently, making the same – or different – mistakes?
Role of companies

Design partners
Pay a company specialized in a given topic to design a specific card with/for you.

Commercial partners
Buy the cards you designed from a company that will take the charge of manufacturing, testing, managing stocks and providing support.
A very useful tool

CERN BE-CO-HT and Cosylab teamed up to build a web-based collaborative tool for electronics designers.

Made itself of open software

- Twiki.
- Mailman.
- SVN.
- Bugzilla.
Summary

- The first *agnostic standard* to interface mezzanines and FPGAs.
- We will adopt it to *improve support* of hardware and *reduce maintenance costs*.
- Combined with Open Hardware paradigm and collaborations, it can *reduce duplication and improve design quality*.

Outlook

- Finish carrier design before end 2009.
- Start collaboration with companies for series production of carrier and ADC/DAC FMCs.