Initial Results of the ECR Charge Breeder for the ^{252}Cf Fission Source Project at ATLAS

ECRIS08
September 15-18, 2008
Richard Vondrasek, John Carr, Richard Pardo, Robert Scott
Overview

- The CARIBU project overview
- Charge breeder system
 - Stable sources, beamline, ECR source
- Results
 - Initial results with Cesium
 - Faraday cup problems
 - Background effect
 - Recent results with Cesium and Rubidium
- Future plans
The CARIBU project – CALifornium Rare Ion Breeder Upgrade

In its final configuration, a 1.0 Ci 252Cf fission source will provide radioactive species to be delivered to the ECR ion source for charge breeding.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Half-life (s)</th>
<th>Low-Energy Beam Yield (s$^{-1}$)</th>
<th>Accelerated Beam Yield (s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>104Zr</td>
<td>1.2</td>
<td>6.0×10^{5}</td>
<td>2.1×10^{4}</td>
</tr>
<tr>
<td>142Ba</td>
<td>14.3</td>
<td>1.2×10^{7}</td>
<td>4.3×10^{5}</td>
</tr>
<tr>
<td>145Ba</td>
<td>4.0</td>
<td>5.5×10^{6}</td>
<td>2.0×10^{5}</td>
</tr>
<tr>
<td>130Sn</td>
<td>222.</td>
<td>9.8×10^{5}</td>
<td>3.6×10^{4}</td>
</tr>
<tr>
<td>132Sn</td>
<td>40.</td>
<td>3.7×10^{5}</td>
<td>1.4×10^{4}</td>
</tr>
<tr>
<td>110Mo</td>
<td>2.8</td>
<td>6.2×10^{4}</td>
<td>2.3×10^{3}</td>
</tr>
<tr>
<td>111Mo</td>
<td>0.5</td>
<td>3.3×10^{3}</td>
<td>1.2×10^{2}</td>
</tr>
</tbody>
</table>
The CARIBU project

- Fission products are collected and thermalized in a helium gas catcher
 - ~20% of all activity extracted as ions
 - Mean delay time <10 msec
 - Extraction is element independent
 - Provides cooled bunched beams for post acceleration
 - Energy spread <1 eV
 - Emittance ~3 π·mm·mrad

- High resolution mass analysis (1:20,000) limits the number of isobars in the analyzed beam
 - To achieve the required resolution, beam extraction must occur at ≥50 kV
 - Must maintain a voltage stability of ±1 V
Transfer line and stable beam source

- Transfer line
 - Three einzel lenses with emittance measurement station and weak beam profile and current monitors
 - Image points of transfer line and stable beam source are matched

- Stable beam sources
 - Surface ionization
 - For metals
 - RF discharge source
 - For gases

50kV A=100 Single Gap de-celeration
Lens1 17.5; Lens2 21kV; Lens3 23kV
Increase Source voltage to 50.00kV
Focusing electrode optics, apt dia=24 mm
Stable beam sources

- **HeatWave HWIG-250**
 - 15 keV beam of over 1.0 µA
 - Spot size: <1 mm² at 2.5 cm from aperture
 - Pellet materials: Li, Na, Mg, K, Ca, Rb, Cs, Ba, Sr

- **RF discharge source**
 - Source has been run off line providing 1-2 eµA beams of Ne, Ar, Kr, and Xe
 - Expect a larger emittance but can be controlled with slits
Source modifications for charge breeder operation

- Improved the high voltage isolation for 50 kV operation
- Modified the injection side of the source to accept low charge state beams
 - Removed the central iron plug to allow for transfer tube penetration
 - Moved the RF injection from an axial to a radial position
 - *Open hexapole allows radial RF injection*
 - *Provides more iron so that the magnetic field on injection side is symmetric*
 - Reshaped the remaining iron to improve B_{inj}
Injection side configuration

- Lexan insulator provides structure with an alumina liner exposed to vacuum
 - Base pressure: 2.0x10^{-8} Torr
 - Increases to 1.7x10^{-7} with plasma on
- Movable transfer tube
 - Highly polished stainless steel
 - 3.15 cm of travel
 - Originally placed just outside of the magnetic maximum
 - Resulted in drain current of 4.0 mA at 50 Watts and unstable source operation
 - Retracted position by 4.0 cm
 - Drain current decreased to 0.3 mA and source operation stabilized
High voltage relationships and stability

- High voltage platforms will be energized by a single power supply (300 kV, 2.5 mA)
 - Beam pipe links the two platforms together ensuring common potential
- Source heads will be energized by separate high voltage power supplies (65 kV, 5 mA)
 - Flexibility to operate in “Stand Alone” mode → low energy traps, source development
 - Decouples any influence of ECR plasma fluctuations on the californium bias voltage
 - Ensures ±1.0 V voltage stability for isobar separator
- Additional ±175 V power supply (‘tweaker’) is in series with the ECRCB
- Feed back controller ensures voltage match between the Cf and ECRCB source heads
 - Adjusts the ‘tweaker’ supply to match the source potentials (nominally 50 kV)
 - Then an additional voltage is summed in to optimize the 1+ ion capture
High stability power supply

- Power supply specifications for charge breeder
 - 65 kVDC, 5 mA
 - Stability: $\leq 0.001\%/K + 20$ mV (≤ 0.67 V \rightarrow 1.34 V window)
 - Supply passed factory acceptance test
 - In house testing shows ≤ 0.500 V deviations at 50 kV
 - Ripple: $< 0.005\% + 20$ mV p-p (≤ 3.45 V p-p)
 - Supply passed factory acceptance test
 - In house testing shows < 0.500 V p-p ripple at 65 kV
 - Gas catcher power supply will have $< 0.001\% + 20$ mV p-p ripple specification (≤ 0.67 V p-p)
In house stability test

- Took ~1 hour for supply to warm up and voltage to settle within 1.0 V window
- Voltage stayed within 1.0 V window for 24 hours
Cesium charge breeding spectrum

- We achieved our first charge bred beam in May 2008
- Mass spectrum of the ECRCB output with and without Cs\(^+\) injection
 - Background beam, without Cs\(^+\) injection, is shown in brown
 - Other traces represent varying levels of charge bred cesium as a function of the Cs\(^+\) input intensity
Charge bred cesium beam – “initial results”

<table>
<thead>
<tr>
<th>Charge state</th>
<th>Efficiency</th>
<th>Efficiency after tuning 1+ line</th>
</tr>
</thead>
<tbody>
<tr>
<td>12+</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>13+</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>16+</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>18+</td>
<td>3.8</td>
<td>7.1</td>
</tr>
<tr>
<td>20+</td>
<td>6.8</td>
<td>9.0</td>
</tr>
<tr>
<td>24+</td>
<td>2.2</td>
<td></td>
</tr>
</tbody>
</table>

- Previous results at TRIUMF using a Phoenix ECR charge breeder had 2.7% efficiency into $^{133}\text{Cs}^{18+}$
- So what can be wrong?
 - Beam currents are not being measured correctly – 1+ or n+
 - Background measurement is not accurate
Beam current measurement

- Using a brand new Thermionics faraday cup
- Picoammeters were calibrated and in good working order
- Built a second small faraday cup and installed it at the front of the transfer tube to check the accuracy of the Thermionics faraday cup measurement
Beam current measurement

- Turned the surface ionization source back on to the same settings as the “9.0% efficiency” run
 - Thermionics cup: 34 nA
 - Small faraday cup: 125 nA

- Problem one: faraday cup was not reading properly
 - Traced to an insulating layer on the tantalum charge collector generated during welding
 - Replaced tantalum piece with a stainless steel charge collector
 - Cup readings in agreement

<table>
<thead>
<tr>
<th>Charge state</th>
<th>Efficiency</th>
<th>‘Normalized’ Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>18+</td>
<td>7.1</td>
<td>1.9</td>
</tr>
<tr>
<td>20+</td>
<td>9.0</td>
<td>2.4</td>
</tr>
</tbody>
</table>
Background measurement

- Orange trace is with Cs\(^+\) injection
- Brown trace is with Cs\(^+\) stopped using an electrostatic steerer just after the 1\(^+\) source but before the analyzing magnet
 - Confirmed that saturating the steerer generates the same background spectrum as shutting off the 1\(^+\) source
- Red trace is with the Cs\(^+\) stopped using the faraday cup after analysis
 - Clearly see a difference in the background levels of 20\(^+\) and 23\(^+\)
Background measurement

- The difference in the background level is due to outgassing in the 1+ analyzing magnet and low energy line which is generated by the beam coming out of the injection side of the ECRCB
 - $^{133}\text{Cs}^{20+}$ very similar m/q as $^{40}\text{Ar}^6+$
 - $^{133}\text{Cs}^{23+}$ very similar m/q as $^{40}\text{Ar}^7+$

- For $^{133}\text{Cs}^{20+}$, with the same incoming Cs$^+$ intensity, the effect is clear
 - Saturating the steerer
 - 2.6% efficiency
 - Putting the faraday cup in
 - 6.5% efficiency

- Problem two: background measurement was not accurate
 - Due to gas loading that is not present when the faraday cup is in the beamline and intercepts the outgoing ECR beam
 - *Background measurement has to be taken by saturating the steerer*
Real results of charge bred cesium

- We now have no idea how to ‘normalize’ the previous experimental results
 - Repeat all of the measurements
 - Surface ionization source electrical isolation began to degrade
 - Poor beam optics as a result but we still collected some data
- Optimized on 133Cs$^{20+}$ using oxygen support gas and 250 W at 10.44 GHz
- Cs$^+$ beam current was 62 enA
- Also tried two-frequency heating
 - 175 W at 10.44 GHz
 - 75 W at 12.27 GHz

<table>
<thead>
<tr>
<th>Charge state</th>
<th>Single Frequency Efficiency</th>
<th>Two Frequency Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>16+</td>
<td>0.9</td>
<td>1.4</td>
</tr>
<tr>
<td>18+</td>
<td>1.0</td>
<td>1.5</td>
</tr>
<tr>
<td>20+</td>
<td>2.4</td>
<td>2.9</td>
</tr>
<tr>
<td>23+</td>
<td>0.5</td>
<td>1.1</td>
</tr>
</tbody>
</table>
Charge bred rubidium beam

- Mass spectrum of ECR ion source output with and without Rb\(^+\) injection
 - Charge bred rubidium is in red
 - Source background, with Rb\(^+\) injection stopped by electrostatic steerer, is shown in brown
 - Source background, with Rb\(^+\) injection stopped by faraday cup, is shown in green
Results of charge bred rubidium

<table>
<thead>
<tr>
<th>Charge state</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>10+</td>
<td>0.7</td>
</tr>
<tr>
<td>11+</td>
<td>0.8</td>
</tr>
<tr>
<td>13+</td>
<td>1.8</td>
</tr>
<tr>
<td>15+</td>
<td>3.6</td>
</tr>
<tr>
<td>17+</td>
<td>0.8</td>
</tr>
</tbody>
</table>

- Optimized on $^{85}\text{Rb}^{15+}$ with oxygen support gas and 270 W at 10.44 GHz
“Pepper Pot” emittance system on 2Q-LEBT

- Mask has 100, 100 µm pinholes, 3 x 3 mm spacing, working area: 27 x 27 mm
- Behind mask is CsI crystal (n80 mm) which is viewed by CCD camera
- Beam energy of 75 keV/q and current density of <1.0 eµA/cm² with Bi beam

See Sergei Kondrashev’s talk on Thursday morning
“Pepper Pot” emittance system for ECR charge breeder

- Mask has 20 µm laser drilled holes, 0.5 x 0.5 mm spacing, 40 mm diameter
- Behind the mask is a CsI crystal (40 mm)
 - Scintillator tested with a 300 nA, 10 kV beam
- Distance between the mask and the scintillator is variable
- Improved sensitivity possible with the addition of a micro channel plate/phosphor
- System is under construction
New fully rear-shielded faraday cup

- Presently using a standard Thermionics faraday cup
- The back of the charge collection cup is not shielded and “sees” the beam coming from the injection side of the ECRCB
 - This means we have to shut off the ECRCB to measure the 1+ beam current
- New cup design is fully shielded and will allow beam measurements without turning off ECRCB
The CARIBU project - status

- High voltage platform and shield cask are complete
- Isoobar separator magnets are in final testing
 - Shipment is expected in October
 - Focusing elements are complete
- Gas catcher construction is nearing completion
- ECRCB commissioning is complete
- CARIBU operation ramps up in 3 steps
 - First 252Cf source – 3 mCi shipped last week
 - Second source 80 mCi, order placed to ORNL
 - 1.0 Ci source for full operation will not be available until at least September, 2009
 - US production awaits funding from Congress
- The CARIBU project can be commissioned with the 80 mCi source. The goal is to complete commissioning by March 31, 2009.
Future plans for the charge breeder

- Continue with beam development using rubidium source
 - More work with multiple frequency heating
- Install RF discharge source to develop source performance with gases
- Replace stainless steel transfer tube with one made of soft iron and nickel coated
 - Improves magnetic field on injection side of ECRCB
- Improve pumping at injection region
 - Have seen some evidence that a lower pressure will improve the efficiency
 - Recently modified the chamber to accept another turbo pump
- Eliminate sources of outgassing
 - Bake out the 1+ transport line
 - Beamline collimators to inhibit backstreaming into ECRCB
- Pursue cleaning of plasma chamber using high pressure rinsing
 - Background is not yet a critical issue, but will become more important as CARIBU comes on line