Ion Instability observed in PLS revolver in-vacuum undulator

June 29, 2006

Heung-Sik Kang, T. Y. Lee, M. G. Kim, C. D. Park, T. Y. Koo, and J. Choi

Pohang Accelerator Laboratory
160-m long 2.5-GeV S-band PLS Linac

2.5-GeV 3rd generation Pohang Light Source (PLS)
Introduction

1. Revolver Undulator: Revolver In-Vacuum X-ray UNdulator (RIVXUN). The minimum gap of the Revolver is 5 mm.

2. The observed ion instability was caused by vacuum degradation in the Revolver when the Revolver gap was closed down below 6.4 mm: Fast Beam Ion Instability (FBII)

3. Beam loss occurred due to the reduced physical aperture at the Revolver

4. Ion instability was suppressed by orbit adjustment around the revolver.
Current ID Status of PLS

Revolver In-Vacuum X-ray Undulator

26 Beamlines
(20 BM + 6 ID)

6 IDs installed in the ring.

- In-vacuum Undulator (1)
- Out-vacuum Undulator (3)
- Out-vacuum Wiggler (2)
Permanent magnet structure is a revolving type with four arrays, which provides 4 different undulator periods of 10, 15, 20, and 24 mm.

<table>
<thead>
<tr>
<th>Array</th>
<th>Undulator Period [mm]</th>
<th>Number of period</th>
</tr>
</thead>
<tbody>
<tr>
<td>C, c</td>
<td>10</td>
<td>101</td>
</tr>
<tr>
<td>B, b</td>
<td>15</td>
<td>67</td>
</tr>
<tr>
<td>A, a</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>D, d</td>
<td>24</td>
<td>42</td>
</tr>
</tbody>
</table>

Undulator magnet length is 1.2 meter

Magnet material: Nd2Fe14B

designed at Spring-8

Kitamura et al. NIMA 467, 110 (2001)
Spectrum Measurement

\(\lambda = 15 \text{ mm} \)

\(\lambda = 20 \text{ mm} \)

\(\lambda = 24 \text{ mm} \)

\[\text{3rd Harmonics} \]

\[9 \text{ keV} < E < 12 \text{ keV} : \lambda = 15 \text{ mm} \]

\[7 \text{ keV} < E < 9 \text{ keV} : \lambda = 20 \text{ mm} \]

\[E < 7 \text{ keV} : \lambda = 24 \text{ mm} \]
Gas Desorption by Photons

- To reduce the resistive wall impedance, the permanent magnet array is covered with a 50 μm-thick Cu sheet coated with 50 μm-thick Ni.

- The bakeout temperature for the vacuum chamber: 200°C
 the magnet arrays: 125°C

- Synchrotron radiation should be blocked by photon stops
- Gas desorption by stray photons
 - Photon desorption
 - Electron-stimulated desorption
- Pre-cleaning by stray photons: Aging process

<table>
<thead>
<tr>
<th></th>
<th>Out-vacuum</th>
<th>In-vacuum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aging by stray photons</td>
<td>Enough:</td>
<td>Not enough:</td>
</tr>
<tr>
<td></td>
<td>Continuous</td>
<td>Intermittent</td>
</tr>
<tr>
<td>Gas desorption by photons</td>
<td>weak</td>
<td>strong</td>
</tr>
</tbody>
</table>

EPAC 2006, Edinburgh

1) The head part of the Electron bunch train ionizes the gas molecules in a bad vacuum place

2) The induced electric field by ions influences the vertical motion of the tail part of the train

Instability was excited by Helium gas injection at one place

Gas molecules in a bad vacuum

Heung-Sik Kang, hskang@postech.ac.kr
Pohang Accelerator Lab.
Ion Instability during the revolver gap change

1. Above gap 7mm, no instability and no lifetime change
2. Below gap 6.4mm, transverse ion instability appeared and then beam loss occurred.

Beam loss occurred as well as lifetime decreased rapidly
~ 5 Hours Electron Beam Lifetime @ 5 mm Undulator Gap!
Ion Instability: Measured vacuum pressure in Revolver

1. The Revolver vacuum pressure increased by 10 times when the gap was changed from 20mm to 6mm.

2. This high vacuum pressure gives rise to FBII

Average vacuum pressure in the ring:
5.0 x 10^{-10} Torr
Ion Instability: FBII

1. Streak camera IMAGES shows that this ion instability is Fast Beam Ion Instability: the tail part of a long bunch train oscillates vertically.

2. There was no appreciable difference at the different fill patterns.

The tail part of the bunch train is oscillating vertically.
Bunch Trains

One train

Beam loss is mostly at the tail

two trains

Before beam loss

After beam loss

1 us

5 ms
 Ion Instability: Bunch Current

Before the instability

After the ion instability

✓ The bunch current of long bunch train was scraped off to a triangular shape.
✓ The vertical beam size seems to be linearly growing along the bunch train as FBII grows.
✓ The physical aperture of the storage ring reduced to the Revolver gap.
Measurement of Beam Oscillation with turn by turn DBPM

![Graph showing vertical oscillation amplitude vs. revolver gap](image)

- Gap: 20 mm
- Gap: 7 mm
- Gap: 6.5 mm
- Gap: 6.4 mm
- Gap: 6.0 mm

600 um
Vertical oscillation when the gap is 6 mm

- The digital BPM data in the figure is an average value of all bunches for each turn.
- Vertical oscillation amplitude of the tail of the bunch train is twice the peak value in the figure.

Growth time of instability: 1 – 3 ms
Transverse damping time of PLS: 8 ms
Instability suppression:
Synchrotron radiation from the upstream dipole magnet

2. A fixed gap photon mask with a vertical aperture of 8 mm was installed in front of the Revolver, but no appreciable change.
Instability suppression: orbit adjustment around the Revolver

Beam Current: 165 mA

No Ion Instability even at 5 mm, No beam loss!

Distance between BPM 11-1 and 11-2: 6.6 m

Lifetime decrease of 5 hours is due to the reduced physical aperture at the Revolver
Causes of the vacuum degradation

- Stary synchrotron radiation from the upstream dipole is not serious.
- Other sources may be dominant:
 - Synchrotron radiation from the Revolver itself, or
 - Heat deposit in the flexible input / output transitions, or
 - Resistive wall impedance in the permanent magnet array

As soon as the orbit was changed, the vacuum pressure rapidly dropped.

Time constant of the vacuum pressure change by orbit is very short.

This rapid change of vacuum pressure might be caused by photon desorption not by heat source.
Summary

1) Ion instability (FBII) was caused by vacuum degradation in the Revolver undulator when the gap was closed down below 6.4 mm.

2) Orbit optimization around the Revolver improved the vacuum pressure appreciably so that the ion instability disappeared.

3) Causes of the vacuum degradation
 - Synchrotron radiation from the upstream dipole is not serious.
 - Synchrotron radiation from the Revolver itself might be dominant.

1) Further Study to identify the causes of vacuum degradation is necessary.
 - Heat deposit in the flexible input / output transitions
 - Resistive wall impedance

Thank You For Your Attention!
Single bunch Test

Gap: 6 mm

Vacuum pressure with single-bunch ≈ Multi-bunch