Construction Status and Issues of the Spallation Neutron Source Ring

Jie Wei

for the Spallation Neutron Source Collaboration

Talk at EPAC’04, Lucerne, Switzerland

July 5 - 9, 2004
Outline

• Introduction

• Accumulator ring design summary
 – Favorable design decisions
 – Debatable design decisions

• Engineering status, **issues & solutions**
 – Magnet post-vendor iterations (shimming, sorting …)
 – Injection trail assembly (mechanical interferences,
 – Collimation and remote handling, target back-shine
 – Extraction, kicker impedance, RF
 – Vacuum, chamber coating, electron cloud mitigation
 – Diagnostics and instrumentation, infra-structure matching

• Summary
Spallation Neutron Source complex

- Under construction at Oak Ridge, Tennessee, U.S.
- Collaborated by 6 labs (LBNL, LANL, JLab, BNL, ORNL, ANL)
- Brookhaven National Laboratory is responsible for the design & construction of Ring & Transports
SNS commissioning at ORNL
Drift-tube-linac 1-3 results

- Reached design peak current 38 mA
- Routinely transported 100% beam
- Emittance at DTL-1 ~ 0.3 πμm

(Aleksandrov, Henderson, Holtkamp …)
Ring’s intensity goal
EPAC'04, Jie Wei

Achromat RTBTRF Arc, extraction
Injection
Collimation
Linac dumpHEBT

Injection
Achromat
RF
HEBT
Linac dump
RTBT

Looking East Toward Dump
Low-loss design philosophy

• Localize beam loss to specific area for remote handling
 – 2-stage collimation: HEBT, Ring, (RTBT)
 – 3-step beam-gap chopping/cleaning: LEBT, MEBT, Ring

• A low-loss design
 – Space charge effects & resonance minimization
 – Magnet field compensation & correction
 – Proper lattice design with adequate aperture & acceptance
 – Injection painting; Injection & space-charge optimization
 – Impedance (extraction kicker) & instability control (e-p)

• Flexibility:
 – Adjustable in energy (+/- 5%), tunes (H 1 unit, V 3 units), injection painting, collimation; interchange RF cavities

• Accident prevention:
 – Design redundancy: immune to accidental linac & kicker errors
Beam-loss localization

- “Sacrifice” collimation region for the rest
- Two-stage system, efficiency above 90%
- Utilize large vacuum chamber aperture and long straight sections

(Catalan-Lasheras, Ludewig, Simos, Tuozzolo, McGahern, Tuozzolo, Cousineau, Davino…)

Ring primary scraper

injection septum & bumps

beam gap kicker

ext. septum

RF instrumentation

ext. kickers

moveable fixed scatterer collimators
Secondary collimator construction

- Length enough to stop primary protons (~1 m for 1 GeV beam)
- Layered structure (stainless steel particle bed in borated water, stainless steel blocks) to shield the secondary (neutron, γ)
- Fixed, enclosing elliptical-shaped wall for operational reliability
- Double-wall Inconel filled with He gas for leak detection

(Ludewig, Simos, et al)
Remote handling

- Overhead, around-the-ring crane
- Quick handling fixtures incorporated into shielding/absorber design
- Remote vacuum clamps; remote water fittings
- Passive dump window & change mechanism
- Rad. hardened magnets

(Murdoch, Pearson, Plum, et al)
Favorable design decisions

• Choose accumulator, not rapid-cycling synchrotron
 – Years of non-trivial battle to achieve good field with the Ring
 – Avoid potentially costly R&D needed for low-loss design

• Choose 4-fold lattice symmetry, not 3-fold
 – Collimator back-shine along vacuum pipe a serious concern
 – Avoid sharing injection with collimation for maintenance

• Choosing doublet straight/FODO arc lattice, not all FODO
 – Allow a robust, symmetric injection layout
 – Allow ideal collimator placement for high efficiency (>90%)

• Reserve upgrade potential for beam energy and power
 – Most magnet/power supply capable for 30% higher energy, matching future superconducting RF linac potential
Ring Lattice

FODO arcs & doublet straights

- Matched, hybrid lattice
 - FODO arc: easy-to-implement correction system, moderate magnet strength
 - Doublet straight: long, uninterrupted straight
 » Improved collimation efficiency
 » Robust injection

- Zero-dispersion injection
 - Independent painting in the transverse & longitudinal directions

\[\nu_x = 6.23 \quad \nu_y = 6.20 \]

\[\beta_x, \beta_y, \eta_z \]

EPAC’04, Jie Wei
Debatable design decisions

• Solid-steel core for all ring dc magnets
 – Instead of laminated steel, solid steel was chosen to save cost, leading to large magnet-to-magnet field variations.
 – A big effort in measurement and shimming

• In-situ baking not allowed for vacuum chambers
 – Tight mechanical clearance between magnet pole & chamber
 – Chamber presently coated with TiN; material of lower SEY may be available although maintenance is non-trivial

• Field optimization of narrow-body quads
 – Large 20th pole remains although impact is negligible for a 1 ms accumulation

• Adequacy of spare components
 – Limited by budget availability
Dipole field variation & shimming

(Wanderer, Jain, ...

Integral Transfer Function at 1.0 GeV in SD17 Dipoles

- As built, Std.Dev.= 0.165%
- Shimmmed as needed, Std.Dev.= 0.010%

Summary of Field Quality in SD17 Dipoles

Harmonics in "Units" at a reference radius of 80 mm

(10 Magnets; Center Position)

<table>
<thead>
<tr>
<th>Harmonics</th>
<th>1.0 GeV</th>
<th>1.3 GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.T.F. (T.m/kA)</td>
<td>(0.25241)</td>
<td>(0.24597)</td>
</tr>
<tr>
<td>Fld Angle (mr)</td>
<td>(-0.81)</td>
<td>(-0.84)</td>
</tr>
<tr>
<td>(b_0)</td>
<td>(10000.0)</td>
<td>(10000.0)</td>
</tr>
<tr>
<td>(b_1)</td>
<td>(-105.16)</td>
<td>(-103.79)</td>
</tr>
<tr>
<td>(b_2)</td>
<td>(0.30)</td>
<td>(-6.13)</td>
</tr>
<tr>
<td>(b_3)</td>
<td>(2.11)</td>
<td>(2.54)</td>
</tr>
<tr>
<td>(b_4)</td>
<td>(1.15)</td>
<td>(-0.45)</td>
</tr>
<tr>
<td>(b_5)</td>
<td>(0.06)</td>
<td>(0.07)</td>
</tr>
<tr>
<td>(b_6)</td>
<td>(-0.32)</td>
<td>(-0.51)</td>
</tr>
<tr>
<td>(b_7)</td>
<td>(0.15)</td>
<td>(0.14)</td>
</tr>
<tr>
<td>(b_8)</td>
<td>(-0.06)</td>
<td>(-0.05)</td>
</tr>
<tr>
<td>(b_9)</td>
<td>(-0.05)</td>
<td>(-0.05)</td>
</tr>
<tr>
<td>(b_{10})</td>
<td>(-0.19)</td>
<td>(-0.19)</td>
</tr>
<tr>
<td>(b_{11})</td>
<td>(0.01)</td>
<td>(0.01)</td>
</tr>
<tr>
<td>(b_{12})</td>
<td>(0.12)</td>
<td>(0.12)</td>
</tr>
<tr>
<td>(b_{13})</td>
<td>(0.01)</td>
<td>(0.01)</td>
</tr>
<tr>
<td>(b_{14})</td>
<td>(-0.09)</td>
<td>(-0.09)</td>
</tr>
</tbody>
</table>

Normal Harmonics

- As built, Std.Dev.= 0.165%
- Shimmmed as needed, Std.Dev.= 0.010%

Integral Transfer Function at 1.0 GeV in SD17 Dipoles

- Magnet Number
- Integral Transfer Function (T.m/kA)

coil angle calibr. drifts

Sector dipole
Magnetic field iterations

- Field quality goal at full 480πμm acceptance (rms)
 - 10^{-4} main magnets
 - 10^{-3} sextupole, chicane
 - 10^{-2} correctors

- Design iterations
 - chamfer & cross-section

- Post-vendor re-iterations
 - pole alignment, iron shimming, coil shimming, coil flipping

- Sorting
 - ITF and sextupoles

- Resonance correction under space charge
 - Multipoles up to octupole components

tune (6.36,6.22), N=10^{14}
- measured error, 3Qx=19 & 2Qx+2Qy=25 resonances
- correction with sextupole (0.09 T/m) & octupole (0.7 T/m^2)

(Fedotov, Parzen, Raparia, et al.)

(Jackson, Jain, Lee, Meng, Papaphilippou, Raparia, Tepikian, Tsoupas, Tuozzolo, Wanderer...)
Arc quad

21-cm ID quads: iron shimmed, sorted
- Initial field variation rms ~3x10^{-4}; final 0.8 ~ 1.4 x 10^{-4} (rms)
- Sorted in 3 power-supply families
- Trim quad coil available for back-up

26-cm ID quads iron shimmed, re-aligned
- ~1mm re-alignment to reduce sext. b_3

(Jackson, Jain, Lee, Meng, Raparia, Tepikian, Tsoupas, Tuozzolo, Wanderer…)

EPAC’04, Jie Wei
Narrow-body quad

• Design
 - Narrow body to clear injection and extraction
 - Pole tip shape iterated for 12-pole
 - Large (2×10^{-3}) 20-pole from narrow geometry; no noticeable effect during 1 ms accumulation
 - Correctable with pole shape scalloping if needed

• Post-vendor
 - ~10 unit skew sext a_3 measured
 - Coil shimming applied
Field comparison

Regular quad (ring arc)

<table>
<thead>
<tr>
<th>n</th>
<th>(b_n)</th>
<th>(a_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean</td>
<td>S.D.</td>
</tr>
<tr>
<td>1</td>
<td>10000</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>−0.27</td>
<td>1.21</td>
</tr>
<tr>
<td>3</td>
<td>0.30</td>
<td>1.32</td>
</tr>
<tr>
<td>4</td>
<td>0.07</td>
<td>0.47</td>
</tr>
<tr>
<td>5</td>
<td>1.07</td>
<td>0.60</td>
</tr>
<tr>
<td>7</td>
<td>−0.01</td>
<td>0.10</td>
</tr>
<tr>
<td>9</td>
<td>−0.52</td>
<td>0.41</td>
</tr>
</tbody>
</table>

Narrow-body quad (ring straight)

<table>
<thead>
<tr>
<th>n</th>
<th>(b_n)</th>
<th>(a_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean</td>
<td>S.D.</td>
</tr>
<tr>
<td>1</td>
<td>10000</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>2.97</td>
<td>2.86</td>
</tr>
<tr>
<td>3</td>
<td>0.04</td>
<td>0.70</td>
</tr>
<tr>
<td>4</td>
<td>0.38</td>
<td>0.63</td>
</tr>
<tr>
<td>5</td>
<td>2.58</td>
<td>0.38</td>
</tr>
<tr>
<td>7</td>
<td>−0.01</td>
<td>0.08</td>
</tr>
<tr>
<td>9</td>
<td>−21.7</td>
<td>0.53</td>
</tr>
</tbody>
</table>
Injection region mechanical clearance

- Mechanical interference found
- Quad edge trimmed & re-welded to minimize ITF variation for all beam energy
Stripped electron collection

- Tapered magnet to guide stripped electrons (~ 2 kW), compensated for the circulating beam
- Carbon-carbon collector on water-cooled copper plate
- Clearing electrode (~ 10 kV) to reduce scattered electrons
- Video monitors on foil & collector

(Meng, Brodowski, Lee, Abell, Macek et al)
Injection chicane measurements

- Integral measurement confirmed field compensation \((10^{-3})\)

<table>
<thead>
<tr>
<th>Harmonic</th>
<th>Chicane #2 (2154.8 A)</th>
<th>Chicane #3 (1732.0 A)</th>
<th>Chicane #2 (2154.7 A) + Chicane #3 (1733.2 A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\int Bdz (Tm))</td>
<td>0.306</td>
<td>0.2016</td>
<td>0.5012</td>
</tr>
<tr>
<td>(b_1)</td>
<td>-1.8</td>
<td>-4.1</td>
<td>-1.9</td>
</tr>
<tr>
<td>(b_2)</td>
<td>-8.2</td>
<td>-9.4</td>
<td>-9.2</td>
</tr>
<tr>
<td>(b_3)</td>
<td>1.2</td>
<td>0.9</td>
<td>1.3</td>
</tr>
<tr>
<td>(b_4)</td>
<td>0.0</td>
<td>-0.4</td>
<td>-0.1</td>
</tr>
<tr>
<td>(b_5)</td>
<td>0.5</td>
<td>-0.7</td>
<td>0.0</td>
</tr>
<tr>
<td>(b_6)</td>
<td>-0.9</td>
<td>0.0</td>
<td>-0.6</td>
</tr>
<tr>
<td>(a_1)</td>
<td>116.0</td>
<td>-158.2</td>
<td>6.2</td>
</tr>
<tr>
<td>(a_2)</td>
<td>-8.0</td>
<td>9.6</td>
<td>-0.9</td>
</tr>
<tr>
<td>(a_3)</td>
<td>8.0</td>
<td>-11.3</td>
<td>0.3</td>
</tr>
<tr>
<td>(a_4)</td>
<td>-0.5</td>
<td>0.4</td>
<td>-0.1</td>
</tr>
<tr>
<td>(a_5)</td>
<td>1.5</td>
<td>-1.3</td>
<td>0.0</td>
</tr>
<tr>
<td>(a_6)</td>
<td>0.1</td>
<td>-0.3</td>
<td>0.0</td>
</tr>
</tbody>
</table>

- Point-coil measurement confirmed field angle for electron collection
Extraction kicker

- Ferrite kicker inside vacuum pipe
- Optimize saturable inductor to effectively “shorten” rise time (200ns)
- Improved flat-top flatness (~0.5%)
- PFN termination: lower impedance
- Increase magnet height to halve coupling impedance (same drive)
- Shield the terminating resistance, reducing cable reflection
Vacuum chamber coating

Injection kicker ceramic chamber double coating
- Cu (~ 0.7 µm) for image current passage
- TiN (~ 0.1 µm) for electron cloud suppression
- Thickness uniformity < ± 30%

Extraction kicker ferrite patterned TiN coating
- ~ 0.1 µm TiN on ≥ 90% ferrite inner surface
- Masked for eddy-current heating control
- Masked near HV conductor to prevent circuit shorts
Electron-cloud mitigation

- Inner surface coated with TiN SEY ~ 1.6, no baking/activation
- Solenoids applied in collimation region
- Clearing electrode (10 kV) near injection foil
- Beam-position-monitors act as clearing electrodes (+/- 1 kV)
- Beam-in-gap kicker to clear residuals
- Extra ports for beam scrubbing

(Wang, Blaskiewicz, Furman, Macek, Pivi, Zhang, Hseuh, He, et al)
Instrumentation

(Russo, Dawson, Sandberg, Shea ...)

- Part of machine protection; fast response
- Wide dynamic range
 - Intensity three order-of-magnitude; amplitude 30 times
- Turn-by-turn capability
- Presence of electron cloud

Detectors

<table>
<thead>
<tr>
<th>Detectors</th>
<th>Number</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam Position M</td>
<td>44</td>
<td>dual plane</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(includes 2 RF radial loop)</td>
</tr>
<tr>
<td>Beam Loss M</td>
<td>75</td>
<td>ion chamber</td>
</tr>
<tr>
<td>Fast BLM</td>
<td>12</td>
<td>photomultip.</td>
</tr>
<tr>
<td>Beam-In-Gap</td>
<td>1</td>
<td>kicker+PMT</td>
</tr>
<tr>
<td>Ion. Profile M</td>
<td>2</td>
<td>H+V</td>
</tr>
<tr>
<td>Wire scanner</td>
<td>2</td>
<td>H+V</td>
</tr>
<tr>
<td>Coherent Tune</td>
<td>1</td>
<td>kick/PU</td>
</tr>
<tr>
<td>Incoherent Tune</td>
<td>2</td>
<td>PLL & QMM</td>
</tr>
<tr>
<td>Beam Current M</td>
<td>1</td>
<td>FCT</td>
</tr>
<tr>
<td>Wall Current M</td>
<td>2</td>
<td>including RF</td>
</tr>
<tr>
<td>E-detector</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Wide-band damper</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>High moment</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

- Luminescence profile study

EPAC’04, Jie Wei
Tune diagnostics, halo scraper, dampers
(Cameron, Fedotov, Raparia, Russo, Henderson, Danilov ...)

Added new beamline components for full-power & beyond operations

- Dipole / quadrupole mode incoherent tune measurement pick-ups and kickers (4 units)
- Diagnostics halo scraper
 » In addition to collimation scraper
- Wide-band dampers
 » Possible e-p instability damping
 » Possible resistive instability damping
Infrastructure matching & installation

• Ring crane capacity iteration
 - Increased assembly weight with increased ring capacity to 1.3 GeV and added chromatic sextupoles
 - Minimum crane capacity restored to 20 tons; design modified to match reduced crane height

• Magnet/cable resistance, water capacity, power supply ratings
 - Power supply ratings to match actual magnet/cable resistance, operating temperature, and water volume & pressure

• Global coordinates & database
Ring hardware

Ring RF cavities

Diagnostics resonance pick-up

Extraction kicker chamber

Winding of radiation resistant coil on RTBT doublet magnet

(Zaltsman, Smith, Pai, Pearson, Seaberg, et al)
Handling & shipping

Ring injection kickers in ORNL tunnel

Ring injection septum at BNL during trial assembly

Ring injection kicker shipped to ORNL
Summary

• SNS has been a test bed of multi-laboratory collaboration

• Brookhaven is on its way to deliver promised fine products on time and on budget

• We are looking forward to ring commissioning in 2005
Acknowledgements

• Thank you, Our friends & collaborators!

• The entire SNS teams (ORN, LANL, …)

• Review committees’ constructive advice (ASAC, DOE, DAC, …)

• And …

Thanks to the devoting team

Thank you for your attention!

EPAC’04, Jie Wei
SNS Main Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinetic energy, E_k [MeV]</td>
<td>1000</td>
</tr>
<tr>
<td>Uncertainty, ΔE_k (95% probability) [MeV]</td>
<td>+/- 15</td>
</tr>
<tr>
<td>SRF cryo-module number</td>
<td>11+12</td>
</tr>
<tr>
<td>SRF cavity number</td>
<td>33+48</td>
</tr>
<tr>
<td>Peak gradient, E_p (β=0.61 cavity) [MV/m]</td>
<td>27.5 (+/- 2.5)</td>
</tr>
<tr>
<td>Peak gradient, E_p (β=0.81 cavity) [MV/m]</td>
<td>35 (+2.5/-7.5)</td>
</tr>
<tr>
<td>Beam power on target, P_{max} [MW]</td>
<td>1.4</td>
</tr>
<tr>
<td>Pulse length on target [ns]</td>
<td>695</td>
</tr>
<tr>
<td>Chopper beam-on duty factor [%]</td>
<td>68</td>
</tr>
<tr>
<td>Linac beam macro pulse duty factor [%]</td>
<td>6.0</td>
</tr>
<tr>
<td>Average macropulse H- current, [mA]</td>
<td>26</td>
</tr>
<tr>
<td>Linac average beam current [mA]</td>
<td>1.6</td>
</tr>
<tr>
<td>Ring rf frequency [MHz]</td>
<td>1.058</td>
</tr>
<tr>
<td>Ring injection time [ms] / turns</td>
<td>1.0 / 1060</td>
</tr>
<tr>
<td>Ring bunch intensity $[10^{14}]$</td>
<td>1.6</td>
</tr>
<tr>
<td>Ring space-charge tune spread, ΔQ_{sc}</td>
<td>0.15</td>
</tr>
</tbody>
</table>

assuming 4% injection loss to dump; 4% target window loss; linac max. ~20° phase