Industrial Involvement in the Construction of Synchrotron Light Sources

M.S. de Jong, Canadian Light Source Inc.
European Particle Accelerator Conference – 2004-07-07
Introduction

• Large demand for synchrotron light sources
 – Completed in past few years:
 • BESSY II, SLS, CLS, SPEAR III
 – Under construction:
 • DIAMOND, SOLEIL, SESAME, Australia, Spain, China

• Many newer sources are “green field”
 – No major national laboratory for support
 – Little pre-existing infrastructure
 – Small design teams
 – Little experience amongst team members
 – Greater reliance on industrial involvement and support
CLS Example

• CLS Project approved on 1999 March 31
 – 140.9 M $C to construct:
 • 2.9 GeV booster and third-generation storage ring
 • at least six beamlines
 – Only 22 staff at the start of the project, including:
 • 2 accelerator physicists
 • 1 mechanical engineer
 • 1 electrical engineer
 • 4-person group for IT, controls, diagnostics
 • 2 scientists

• Challenge:
 – Complete facility in ~ five years
 – Increase technical staff to ~60
 – Build organization for operations and future R & D

• Review industrial involvement through major CLS contracts
 – Examine issues and challenges
 – Determine “lessons learned”
Status – 1999 June 15
Major Contracts – Project Services

- **Canadian Light Source Inc.**
 - Not-for-profit corporation controlled by U. of Saskatchewan
 - Permits independent policies and management
 - Responsible for:
 - Overall management and operation
 - Liaison with users, 14 capital funding and 4 operating funding partners
 - Technical design of accelerators, storage ring and beam lines
 - License from Canadian Nuclear Safety Commission

- **UMA Management Services**
 - Day-to-day project and construction management
 - Design and Engineering of conventional facilities (building and services)
 - Additional technical design and engineering support as needed

- Formed an effective joint project team
Major Contracts - Strategy

• For accelerator systems:
 – Reduce detailed design as much as possible
 • Proceed with design only far enough to ensure feasibility
 • Functional and performance specifications only
 – Retain responsibility for:
 • Supervisory control
 • Machine protection
 • Personnel protection systems
 – Suppliers to perform as much testing as possible

• For beamlines and insertion devices:
 – Develop some beamline design capability
 – Develop room-temperature ID design and construction capability
Major Contracts - Booster

• First major technical contract awarded to Danfysik
 – CLS supplied nominal lattice design
 – Used to validate cost estimates for storage ring
 – Forced development of facility standards and guidelines
 – Allowed CLS staff to focus on storage ring system design
 – “Turn-key” System included:
 • All magnets supplied, pre-aligned on girders
 • All power supplies
 • RF system
 • Vacuum chambers
 • Diagnostics
 – Included installation supervision and commissioning assistance
 – Supply excluded control system, vacuum pumps

• Awarded in 2000 January
• Installation complete in 2002 July
• Commissioning tests complete in 2002 September
Booster Extraction Area
Major Contracts - IT

- **EDS Canada supplied:**
 - redundant network and server backbone for **all** data and communications including:
 - Office, control and beamline networks (VLANs)
 - Voice-over-IP telephones
 - **IT architecture:**
 - Guidelines and recommendations for future IT expansion
 - Analysis of CLS IT requirements

- **External Review Committee to monitor contract**
 - Valuable comments from expert reviewers

- **Difficult contract scope**
 - Few CLS management processes had clear IT needs
 - User requirements very difficult to determine so early in project
Major Contracts – Magnets and Power Supplies

• Magnets
 – Developed a magnet measurement laboratory
 • Primarily to support ID development
 • But supplies must measure all accelerator magnets
 • Can be rechecked at CLS, if necessary
 – Dipole magnets (TESLA)
 • Measurements done in Barcelona
 – Quadrupole and Sextupole magnets (Sigma-Phi)
 – All magnets within specifications

• Power Supplies
 – Programmable DC for storage ring magnets (IE Power)
 – Pulsed supplies and magnets (Danfysik)
Storage Ring Sector
Major Contracts – RF System

• Early decision to change to Superconducting RF
 – Determined frequency (change to 500 MHz)
 – Availability of cavity suppliers

• Cavity (ACCEL)
 – Single cavity (+spare) based on 500 MHz Cornell design
 – Includes cold valve box and instrumentation

• 300 kW RF Amplifier (Thales)
 – Turn-key system: power supply, klystron, circulator and loads

• Cryoplant (Linde)
 – >250 W cooling at 4.4 K

• CLS is first light source to use SRF storage ring acceleration!
 – Operations support part of responsibility of two technicians
 – CLS only provided waveguide and low-level RF control
Superconducting RF Cavity
Major Contracts - Vacuum

• Vacuum pumps and controllers (Varian)
 – Single supply contract for the entire facility
 – Negotiate standard prices for all procurement
 – CLS supplies pumps and controllers to all contractors

• Storage ring vacuum chambers (FMB)
 – Based on BESSY II and SLS design
 – Installation by local construction contractors under CLS supervision
Major Contracts - Beamlines

- Insertion devices
 - 4 designed and assembled in-house
 - Two PPM, one hybrid in-vacuum SGU, one EPU
 - Support structures by ADC (PPM+EPU) and RMP (SGU)
 - Superconducting multi-pole wiggler (BINP)
- Front-ends based on APS design (Johnsen Ultravac)
- Seven beamlines
 - 2 IR beamlines
 - spectrometers (Bruker) and optical chicane (ADC)
 - Five x-ray beamlines
 - Two turn-key (IDT+Koizu, ACCEL)
 - Two functional specification of components (Jobin-Yvon, Oxford Danfysik, and McPherson)
 - One build-to-print (Johnsen Ultravac) based on ALS design
Issues and Challenges - 1

• Project management view: scope, cost and schedule
• Scope:
 – Need “standard” scope for technical specifications
 • Availability of good sample technical specification important
 • no “bonus points” for originality in specifications
 – Need design standards and guidelines very early in project
 • Difficult with new or inexperienced staff
 – Desirable to have at least 3 bids
 • Can determine scope of major tenders
• Cost:
 – Importance of competitive bids
 • Typically factor of two or more in price if 3 or more bids for design-build tenders
 • Restrictive tendering practices will increase cost
 – Frequently used fixed price + incremental rates for most labour contracts
 – Competent installation labour will challenge design team to keep ahead
Issues and Challenges - 2

• Schedule:
 – Most design-build contracts arrived late
 • 10 major CLS accelerator contracts
 – 8 deliveries were late by between 5 and 8 months
 • Overall project schedule needs to allow for this possibility
 – CLS targeted all contracted deliveries by end of 2002
 • Approximately ¼ to 1/3 of delay was due to CLS
 • **Delays CANNOT be used to justify other schedule slippage**
 – Control of scope and design changes essential
 • Need engineering change control
 • New staff often unfamiliar with process
 – Used bonus-penalty contract for two smaller contracts - effective

• Communications (internal and external):
 – Need good tracking of issues raised and their resolution
 – Plan on 3 – 5 face-to-face meetings over contract duration
 – Use weekly teleconference with email of issue-tracking form
 – Difficult to reduce internal delays when contractor questions arise
2003 December

- SUCCESS: 10 mA Stored beam in “C L S” fill pattern
Conclusion

• Storage ring commissioning finished in 2004 May
 – Approximately six months behind original schedule
 – Cost over-run is approximately 0.05%
• Start Routine Operation in 2004 August
• I wish to acknowledge the huge contribution to our success by:
 – All CLS suppliers and vendors for their commitment to high quality work
 – University of Saskatchewan management and staff
 – UMA Engineering
 – All CLS staff