AN RF CAVITY FOR BARRIER BUCKET EXPERIMENT IN THE AGS

Kyoto University, Gokanosyo, Uji, Kyoto 611, JAPAN
1KEK-Tanashi, 3-2-1 Midori-cho, Tanashi, Tokyo 188, JAPAN
2KEK, 1-1 Oho, Tsukuba, Ibaraki 305, JAPAN

Abstract

A barrier bucket experiment in the AGS is planned in 1998. An accumulation of the beam, which intensity of 1.0×10^{14} ppp is, acceleration after the injection with a barrier bucket scheme and other RF gymnastics experiments will be studied. An isolated RF pulse of 40kV per cavity is necessary for the experiment. The RF frequency is 2MHz and the isolated pulse is generated at the repetition rate of the revolution frequency of 357kHz. We have developed the barrier cavity for this experiment. The cavity is loaded with FINEMET core. It has low Q value but high shunt impedance. It makes the necessary power less than that of ferrite-loaded cavity for an isolated RF pulse.

1 BARRIER BUCKET EXPERIMENT

A barrier bucket scheme is considered to accumulate more particles in the Ring[1][2]. In the case of the ordinary injection(bucket-to-bucket transfer), the number of the bunches in the main ring is limited by the circumference ratio between the main ring and the booster. However the number of the injection is independent of the ratio in the case of the barrier bucket. The bunching factor can be increased with this scheme. The beam loss during injection is decreased because the tune shift by space charge is reduced.

Figure 1 shows the longitudinal phase space during the injection with this scheme. A couple of isolated RF pulses is provided at the revolution frequency(a). A bunch is injected between them and spread longitudinally(b). One of the RF pulses remains fixed in the phase space, the other is moved adiabatically to conserve the emittance. After debunching except the gap(c), one of the RF pulses moves again from the fixed phase as repelling the bunch to make an empty bucket. The next bunch is injected into the empty bucket(d) and merged in the circulating beam. The above procedure is repeated. It is important to accumulate the beam without the emittance blow-up. If the emittance is grown, the rest of the longitudinal phase space for next bunch decrease.

2 BARRIER CAVITY

2.1 Magnetic cores

The barrier cavity is loaded with FINEMET cores. The FINEMET core is one of the Magnetic Alloy(MA) cores. The MA core has some advantages, which enables to make the structure of the cavity simple[3]. The required power to generate a single sine wave becomes less because of the low Q value and high impedance. The necessary voltage and current are given by,
The peak current is presented as follows,

\[I(t) = \begin{cases} \frac{V_0 \sin \omega t}{R_p} + \frac{V_0}{\omega L_p} & 0 < \omega t < 2\pi \\ \frac{V_0 \cos \omega t}{\omega L_p} & \end{cases} \]

The inductance of the MA core is about 20 times larger than that of the ferrite. The shunt impedance is equal as that of ferrite at low \(B \). It becomes larger than it above \(B \) of about 100 gauss. If the \(R_p \)'s are same, the peak current of the MA-loaded cavity is lower than that of the ferrite-loaded cavity to acquire same barrier voltage of a single sine wave.

The \(Q \) value is so low that the tuning loop is not necessary to tune the cavity. Because the Curie temperature is high as about 600\(^\circ\)C, we can make the system for cooling the cores simple.

2.2 Components of the cavity

The schematic view of the cavity is shown in Figure 2.

![Schematic view of cavity and RF amplifier](image)

Figure 2: Schematic view of cavity and RF amplifier.

The cavity has 4 cells and each cell has an acceleration gap. There are 12 MA cores per cell, in totality 48 cores per cavity. The cores are put at a distance of 10mm to keep the space for air flow and cooled by air from a blower. The cover of the cavity is cooled by water. The RF power is inductively fed on through a couple of the driving loops. These driving loop are wound around 12 cores.

2.3 RF amplifier

The power amplifier uses two EIMAC 4CW30,000A 30kW tetrodes in the grounded-cathode configuration[4]. The amplifier operates push-pull in class B and it is biased to cut-off except a single pulse of 2MHz. The duty is about 6% of the repetition period. The RF power of 2kW for the drive amplifier is required and the two 1kW solid state amplifiers(ENI A1000) are combined. The RF voltage from them is stepped up twice through a transformer for the grid circuit.

2.4 Parameters

The parameters of the barrier cavity system are listed in Table 1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Voltage [kV]</td>
<td>40</td>
</tr>
<tr>
<td>RF frequency [MHz]</td>
<td>2.0</td>
</tr>
<tr>
<td>Number of gaps</td>
<td>4</td>
</tr>
<tr>
<td>Number of cores [/cavity]</td>
<td>48</td>
</tr>
<tr>
<td>Length of cavity [m]</td>
<td>2.6</td>
</tr>
<tr>
<td>peak (B_{RF}) [T/core]</td>
<td>0.12</td>
</tr>
<tr>
<td>peak (P_{in}) [W/core]</td>
<td>750</td>
</tr>
<tr>
<td>(Q) value</td>
<td>0.6</td>
</tr>
<tr>
<td>Cavity resistance [kΩ]</td>
<td>4.0</td>
</tr>
<tr>
<td>Tetrode resistance [kΩ]</td>
<td>2.3</td>
</tr>
<tr>
<td>Beam impedance [kΩ]</td>
<td>3.6</td>
</tr>
</tbody>
</table>

3 IMPEDANCE

The shunt impedance per gap is about 1kΩ at 2MHz. The tube impedance of about 2.3kΩ is quadrupled when it is seen from a gap. Therefore the cavity impedance seen by beam becomes about 3.6kΩ.

A single sine wave includes broad Fourier components, as from the revolution frequency to twice of the RF frequency. Therefore any parasitic resonance around the RF frequency should not be in the impedance of the barrier cavity system. However some parasitic resonances have been observed. One of them, which resonant frequency of 12MHz was, could be seen in the waveform of the gap voltage. We found that the leakage inductance of the driving loops which coupled with the power amplifier caused it by the measurement. This resonance was disappeared when the driving loops were removed. The shift of the parasitic resonant frequency was measured when the external capacitance was inserted between the plates of the tetrodes and the RF ground potential[5]. The relation between the resonant frequency and the capacitance is linear and presented, as \[f = \frac{(2\pi)^2 L(C + C_{ez})}{Q} \]. The gradient shows the inductance and the fragment means the capacitance. The result is shown in Figure 3.
The peak voltage of 40kV per cavity has been achieved.
Figure 5 shows a single sine wave of 10kV per gap. The RF voltage satisfy the necessary bucket height of 0.4% and the area.

An RF cavity has been developed for the barrier bucket experiment in the AGS. The 48 MA cores have been inserted into the cavity. The cavity requires less RF power than that of the ferrite-loaded cavity because of the low Q value but high shunt impedance. A single sine wave of 40kV per cavity is a design value and it has been achieved.

We would like to thank Prof. A. Noda and Mr. Ohta for their advice and collaboration.

7 REFERENCES