Future Stable-beam Accelerators for Nuclear Physics

Leigh Harwood
Jefferson Lab

SRF2003
September 12, 2003
Lubeck, Germany
Outline

J-PARC

RHIC
 • RHIC-II
 • eRHIC

JLab
 • 12 GeV
 • 25 GeV
 • eLIC

Waiting on approval & funding from DOE
Japanese Proton Accelerator Research Complex

Collaboration between JAERI and KEK

Complex of accelerators for MANY goals

• Nuclear and particle physics
 • 50 GeV primary beam
 • Secondary beams
 • Kaon, pion, hyperon, neutrino, muon, and anti-proton
• Materials and life sciences
 • Pulsed neutron source (3 GeV, pulsed)
• Accelerator transmutation of radioactive waste
 • Includes an srf linac section
J-PARC Schedule

Fiscal year 2000+

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accelerator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LINAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material & Life</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuclear & Particle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **400MeV**: LINAC Phase-I
- **600MeV**: LINAC Phase-I
- **3GeV**: PS Phase-II
- **50GeV**: PS Phase-II

Phase I is underway

Phase II is not yet approved
RHIC-II
Upgrade in the luminosity of RHIC
eRHIC
Electron-ion collider
RHIC-II

RHIC-II is a luminosity upgrade to RHIC (Relativistic Heavy Ion Collider)

The route is to use electron-cooling.

- Copper - Novosibirsk
- SRF - BNL/JLab collaboration

Anticipated increased average luminosity

- 9x for Au-Au (100 GeV/u): $0.8 \times 10^{27} \Rightarrow 7 \times 10^{27}$
- 3x for $\vec{p} - \vec{p}$ (250 GeV/u): $2.4 \times 10^{32} \Rightarrow 8 \times 10^{32}$
RHIC Luminosity with and without e-cooling

![Graph showing luminosity with and without e-cooling over time.](image)

- **With e-cooling**
- **Without e-cooling**

Time, hours

Au-Au Luminosity (10^{27})

- With cooling:
 - 0
 - 2e+27
 - 4e+27
 - 6e+27
 - 8e+27
 - 1e+28

- Without cooling:
 - 0
 - 2
 - 4
 - 6
 - 8
 - 10
RHIC Electron Cooler R&D

Demonstrate 10 nC, 100–300 mA CW rf photo-cathode electron gun:
High power, 700 MHz 2.5 cell cavity
BNL-LANL collaboration

Develop CW s.c. cavity for high intensity beams:
Large bore, 700 MHz cavity with ferrite HOM dampers and high beam break-up threshold
BNL-JLab collaboration

Demonstrate 10ppm solenoid
BNL
Energy Recovery Linac – large bore (19 cm diameter)

FE modeling for acoustics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>240 Ω</td>
</tr>
<tr>
<td>R/Q</td>
<td>710 Ω</td>
</tr>
<tr>
<td>Q_{bcs}</td>
<td>4.9 10^{10}</td>
</tr>
<tr>
<td>E_p/E_a</td>
<td>2.1</td>
</tr>
<tr>
<td>H_p/E_a</td>
<td>5.94 mT/MV/m</td>
</tr>
</tbody>
</table>

![Graphical representation of the linac structure](image-url)

Carlo Pagani, Paolo Pierini

Energy Recovery Linac – HOM Damping

Ferrite absorber
Energy Recovery Linac – HOM damping

TDBBU results: 4 cavities; ferrite damping; 1 A

1 mm

100 msec
Electron-Ion Colliders

Over the past two decades we have learned a great amount about the hadronic structure.

Some crucial questions remain open:

• What is the structure of the proton and neutron in terms of their quark and gluon constituents?
• How do quarks and gluons evolve into hadrons?
• What is the quark-gluon origin of nuclear binding?

A high-luminosity electron–ion collider has been proposed as a powerful new microscope to probe the structure of matter.
EIC parameters

Center-of-mass energy between 20-45 GeV with energy asymmetry of \(\sim 10 \)

- 3 GeV electrons on 30 GeV/nucleon ions
- 5 GeV electrons on 100 GeV/nucleon ions

Ion species of interest:
- Whole periodic table (theorist dependent)

CW Luminosity:
- \(\gtrsim 10^{33} \text{ cm}^{-2} \text{ sec}^{-1} \) per nucleon (HERA achieved \(\sim 5 \times 10^{32} \))

Polarized beams (electrons and light ions)
- Longitudinal polarization \(\geq 50\% \)
- Transverse polarization of ions extremely desirable
- Spin-flip of both beams extremely desirable

Review article on EIC’s: ICFA Beam Dynamics Newsletter #30; April, 2003; (Wei and Merminga, ed.)
eRHIC: ring–ring option (baseline)

- **e- accelerator**
 - 2 GeV injector (pulsed, copper)
 - 10 GeV, 0.5 A e-ring with ¼ of RHIC circumference (similar to PEP II HER)
 - Inject at 2 GeV, operate at 5–10 GeV
 - 15 min. polarization build-up (super-bends)

- **Interaction region**
 - Existing RHIC interaction region allows for typical asymmetric detector
 (similar to HERA or PEP II detectors)
eRHIC: linac-ring option

Replaces electron storage ring with an ERL.

Advantages vs ring-ring
- Flexibility for electron polarization flips
- Removes e-beam disruption constraints

Needs more than x100 leap in polarized electron source technology
12 GeV
Upgrade the present accelerator from 6 GeV to 12 GeV

25 GeV
Upgrade the 12 GeV accelerator to 25 GeV

eLIC
Use the 5 GV of linac as the basis for an EIC
Advances in understanding of hardonic matter using JLab’s 6 GeV electron accelerator.

- Detailed mapping of the charge structure of the neutron
- Detailed mapping of electro-magnetic structure of the proton
- Dirth of strange quarks in the proton
- Discovery of the penta-quark.

New windows would be opened by increasing to 12 GeV

- Exotic mesons (hybrids of gluonic flux tubes and quarks)
- Route to possible explanation of quark confinement
- Symmetry tests of the Standard Model
- Short-range behavior of QCD
Two 1.1 GeV linacs

New cryomodules deliver ≥100 MV and will require development of new rf controls.
12 GeV cryomodule

Specifications

• 7-cell cavities
• Average accelerating field: 19.2 MV/m
• Q_0: $>8 \times 10^9$

Status:

• 1st cryomodule with 7-cell cavities operating in CEBAF
• 2nd will soon be installed in JLab FEL
• “100 MV” cryomodule
 • Being constructed
 • Exploring cavity shape options for overall system optimization
Cavity Designs for 12 GeV

<table>
<thead>
<tr>
<th></th>
<th>OC</th>
<th>HG</th>
<th>LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ_{equator} [mm]</td>
<td>187</td>
<td>180</td>
<td>174</td>
</tr>
<tr>
<td>ϕ_{iris} [mm]</td>
<td>70</td>
<td>61</td>
<td>53</td>
</tr>
<tr>
<td>k_{cc} [%]</td>
<td>3.3</td>
<td>1.7</td>
<td>1.5</td>
</tr>
<tr>
<td>$E_{\text{peak}}/E_{\text{acc}}$</td>
<td>2.6</td>
<td>1.9</td>
<td>2.2</td>
</tr>
<tr>
<td>$B_{\text{peak}}/E_{\text{acc}}$ [mT/(MV/m)]</td>
<td>4.6</td>
<td>4.3</td>
<td>3.7</td>
</tr>
<tr>
<td>R/Q [Ω]</td>
<td>96</td>
<td>112</td>
<td>129</td>
</tr>
<tr>
<td>G [Ω]</td>
<td>274</td>
<td>265</td>
<td>280</td>
</tr>
<tr>
<td>$R/Q\cdot G$ [$\Omega\cdot\Omega$]</td>
<td>26k</td>
<td>30k</td>
<td>36k</td>
</tr>
</tbody>
</table>

Poster: Kneisel, et al
25+ GeV CEBAF

27.5 GeV Install sc beam transport

Two 1.1 GV linacs

Twenty 100+ MV cryomodules

CHL-"N"

Twenty 100+ MV cryomodules

27.5 GeV

25 GeV

Two 2.5 GV linacs

Could be used for an EIC driver

Thomas Jefferson National Accelerator Facility
electron-Light-Ion Collider (eLIC) at JLab

Could do a linac-ring

• Same luminosity as eRHIC
• Same leap needed in injector performance

Alternative: hybrid between ring-ring and linac-ring

• Store the electron beam for ~100 turns in a circulator ring (CR)
• Potential advantages:
 • Electron beam disruption less of a problem than for ring-ring
 • Reduces average current in linac by 100x (pulsed beam in linac)
 • Reduces requirement on electron source by 100x
 • BBU/HOM problems easier by 100x ⇒ cavities are easier
• Don’t know how far circulator ring concept can really be pushed ⇒ needs accelerator physics R&D
eLIC with a Circulator Ring

5 GeV electrons
50-100 GeV light ions

CEBAF with Energy Recovery

Injector

Beard Dump

Solenoid

Booster

Snake

IR

SRFQDL CCL
R&D Needs for EIC’s

<table>
<thead>
<tr>
<th></th>
<th>Ring-ring</th>
<th>Linac-ring</th>
<th>CR-ring</th>
<th>Active R&D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminosity</td>
<td>10^{33}</td>
<td>10^{33}</td>
<td>10^{33} 10^{34} 10^{35}</td>
<td>BNL, Cornell, Jlab</td>
</tr>
<tr>
<td>e-cooling</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>“¼A” cw gun</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>“½A” cavities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiative</td>
<td>Yes</td>
<td>—</td>
<td>—</td>
<td>BNL</td>
</tr>
<tr>
<td>polarization</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e-gun current</td>
<td>—</td>
<td>130 mA</td>
<td>5 mA 16 mA 25 mA</td>
<td>JLab</td>
</tr>
<tr>
<td>(~1 mA now)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-energy, high-current energy recovery</td>
<td>—</td>
<td>Yes</td>
<td>Yes</td>
<td>JLab</td>
</tr>
<tr>
<td>Circ. ring accel. physics.</td>
<td>—</td>
<td>—</td>
<td>Yes</td>
<td>Jlab</td>
</tr>
</tbody>
</table>

Thomas Jefferson National Accelerator Facility

Harwood, SHF 03, 6/108
SRF R&D

Electron cooling

- 705 and 1497 MHz
- Cutting-edge SRF performance is not critical
- HOM damping: \(~\frac{1}{2}A\)

Linacs

- 705 and 1497 MHz
- “Floor gradient” (MV per meter of tunnel) is important
- Heat load reduction
 - Increase Q_0
 - Optimize shape
- HOM damping
 - Linac-ring: >130 mA
 - CR-ring: 25 mA
Summary

New fixed-target and collider facilities are being built or designed in Japan and the US.

SRF is integral to all the US facilities.

Plenty of R&D opportunities