Electron Cloud Experiments at Fermilab: Formation and Mitigation

Bob Zwaska
Fermilab

March 28, 2011
Particle Accelerator Conference
Introduction

- New accelerators / brighter beams
 - LHC/ILC/PrX
- Collective effects scale strongly
 - Space Charge, Impedance
 - Electron Cloud
- ECloud is a somewhat recent instability
 - Doesn’t form at all for low-intensities
 - No obvious signature in conventional beam instrumentation

Generally, with any intense positive beam, a cloud of electrons can form within the vacuum vessel – degrading the performance of the machine
Driving Protons at the Main Injector

- Main Injector today produces 120 GeV proton beams for neutrinos and antiprotons
 - 400 kW average power synchrotron
 - 4-5E13 protons per pulse
 - 10e10 Protons per bunch
- Near future upgrades (NOvA)
 - 700 kW, 4-5E13 protons per pulse
- Upgrades in planning –Project X
 - 2+ MW at 60-120 GeV in Main Injector
 - 15+ E13 protons per pulse
 - 30e10 Protons per bunch
- Electron cloud on the top of our minds as a problem for tripling the beam intensity
Electron Cloud Model at Fermilab

- Considering the Main Injector beam
 - 1-8 ns long bunches every 19 ns
 - 1-5 mm transverse sigma
 - Bunch intensities of $\sim 10^{11}$ protons

- Produce a few initial/primary electrons
 - Residual gas ionization
 - $O(\, e^- / m / \text{torr} / \text{proton})$
 - Lost protons
 - Can produce 100’s in beam pipe
 - Generally a small contribution

- Beam produces strong potential
 - Nonadiabatic appearance
 - Accelerates electrons

- Beam disappears
 - Electrons collide with wall
 - Produce more electrons through secondary emission

March 28, 2011
Bob Zwaska - Fermilab
Particle Accelerator Conference
Secondary Emission

• Electrons produced upon collision with wall
 ➢ Conversion of energy to multiplicity
• On average, 2 electrons produced per incident 400 eV electron on unconditioned MI pipe
 ➢ Over time, this number decreases
• Secondary electron yield (SEY) depends on the energy of the incident electron
• Different materials and geometries can have different SEYs
• Produced electrons have much lower energies, typically 1-10 eV
Simulation of Entire Process

- Simulations suggested that MI might be near a threshold for electron cloud formation
 - 4-5 orders or magnitude increase of cloud density with a doubling of bunch intensity
 - Used existing code: POSINST
 - Had been applied to several other electron cloud situations
- We operate now just on the lower side of the threshold
 - We could move above it through these upgrades and be hit without warning
(simple) Critical Model for ECloud

- Why such a threshold for the Main Injector?
- Consider equilibrium at marginal intensities
 - Criticality parameter: κ
 - Proportion of electrons that “survive” a bunch crossing
 - No straightforward equation for κ
 - Combination of energy gain, SEY curve, and slow loss between bunches
 - Comes from simulation
 - Below threshold, ($\kappa < 1$) equilibrium density is reached
- At $\kappa > 1$ there is exponential growth, and it is limited only by the space charge of the electrons screening the proton beam potential
 - Requires at least a few %, quickly approaches line density of the same order as the beam
 - $N_{eq} = f \times N_{beam}$ \{0.1 < f < 1\}
 - f comes from simulation. Typically around 70%
- Primary production is the key difference
 - In electron/positron machines, can be ~ 1% / bunch
 - Electron density is large even if $\kappa < 1$, so transition is weak
 - In MI it is order $1e-8$ / bunch, so the transition at $\kappa=1$ is very strong

\[
N_{b+1} = \kappa \times N_b + P
\]

\[
N_{eq} = \frac{P}{1 - \kappa}
\]
Project X Approach

- Program of experiments and simulation addressing the questions for Project X
 - Tripling the MI Intensity
- Measurements with the existing beam have shown evidence for the beginning of a threshold
- Our default approach is to plan to coat all the MI magnets
 - Coatings can reduce the secondary electron yield
- However, coating is expensive and time-consuming
- Lingering question is whether we can get away without coating
 - Or coating a single ring, or only part
- Towards Project X:
 - Develop new instrumentation, particularly for the dipoles
 - Measure SEY conditioning in MI and at Cornell
 - Program of simulation to be able to extrapolate the conditions of conditioning at higher intensity
 - Bench experiments with coatings and conditioning
First Evidence: Pressure Rises in MI

See fast rise over the course of a cycle (1s)

The control system induces delay

Occurs only at location of uncoated ceramic

Ceramic beam pipes
Dynamic Rises Around the Ring

Rises observed at ~4% of pumps

<table>
<thead>
<tr>
<th>Pump</th>
<th>$P_{initial}$</th>
<th>P_{final}</th>
<th>ΔP</th>
<th>$\Delta P/P$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:IP102A</td>
<td>4.5</td>
<td>4.7</td>
<td>0.2</td>
<td>4%</td>
</tr>
<tr>
<td>1:IP102B</td>
<td>2.7</td>
<td>3.1</td>
<td>0.4</td>
<td>15%</td>
</tr>
<tr>
<td>1:IP102C</td>
<td>2.4</td>
<td>2.8</td>
<td>0.4</td>
<td>15%</td>
</tr>
<tr>
<td>1:IP102D</td>
<td>2.3</td>
<td>1.8</td>
<td>1.6</td>
<td>68%</td>
</tr>
<tr>
<td>1:IP103A</td>
<td>7.8</td>
<td>8.1</td>
<td>0.3</td>
<td>4%</td>
</tr>
<tr>
<td>1:IP103C</td>
<td>8.5</td>
<td>8.8</td>
<td>0.3</td>
<td>4%</td>
</tr>
<tr>
<td>1:IP1061</td>
<td>1.4</td>
<td>2.1</td>
<td>0.7</td>
<td>50%</td>
</tr>
<tr>
<td>1:IP1062</td>
<td>2.4</td>
<td>3.7</td>
<td>1.3</td>
<td>54%</td>
</tr>
<tr>
<td>1:IP1063</td>
<td>2.2</td>
<td>3.4</td>
<td>1.2</td>
<td>55%</td>
</tr>
<tr>
<td>1:IP1072</td>
<td>1.2</td>
<td>1.7</td>
<td>0.5</td>
<td>42%</td>
</tr>
<tr>
<td>1:IP2225</td>
<td>0.5</td>
<td>3.5</td>
<td>3.0</td>
<td>600%</td>
</tr>
<tr>
<td>1:IP2226</td>
<td>2.0</td>
<td>3.0</td>
<td>1.0</td>
<td>50%</td>
</tr>
<tr>
<td>1:IP2820</td>
<td>2.0</td>
<td>2.5</td>
<td>0.5</td>
<td>25%</td>
</tr>
<tr>
<td>1:IP304C</td>
<td>2.5</td>
<td>3.0</td>
<td>0.5</td>
<td>25%</td>
</tr>
<tr>
<td>1:IP3076</td>
<td>1.7</td>
<td>2.0</td>
<td>0.3</td>
<td>18%</td>
</tr>
<tr>
<td>1:IP5271</td>
<td>3.0</td>
<td>3.8</td>
<td>0.8</td>
<td>26%</td>
</tr>
<tr>
<td>1:IP601</td>
<td>5.5</td>
<td>6.0</td>
<td>0.5</td>
<td>9%</td>
</tr>
<tr>
<td>1:IP602</td>
<td>4.2</td>
<td>5.3</td>
<td>1.1</td>
<td>26%</td>
</tr>
<tr>
<td>1:IP608D</td>
<td>2.7</td>
<td>3.1</td>
<td>0.4</td>
<td>15%</td>
</tr>
<tr>
<td>1:IP6132</td>
<td>3.0</td>
<td>4.3</td>
<td>1.3</td>
<td>43%</td>
</tr>
<tr>
<td>1:IP6140</td>
<td>24</td>
<td>30</td>
<td>6</td>
<td>25%</td>
</tr>
<tr>
<td>1:IP6141</td>
<td>17</td>
<td>21</td>
<td>4</td>
<td>24%</td>
</tr>
<tr>
<td>1:IP6142</td>
<td>8</td>
<td>11</td>
<td>3</td>
<td>38%</td>
</tr>
<tr>
<td>1:IP6151</td>
<td>1.2</td>
<td>1.6</td>
<td>0.4</td>
<td>33%</td>
</tr>
</tbody>
</table>

Locations of vacuum rises
Early Data - Threshold

• Installed a single electron detector
 ➢ Argonne RFA in straight section

• Large number of cycles sampled at maximum electron current

• Clear turn-on at higher intensities
 ➢ Threshold at \(\sim 26 \times 10^{12} \) protons
 ➢ Threshold later moved higher

• Allowed fitting of simulation to data, giving an SEY
 ➢ Fit to simulation by Furman
 ➢ Conditioned pipe gave SEY \(\sim 1.3 \)
2007-2008 Run Summary

- Threshold started low and moved up to ~ 30e12 with beam studies
- When 11 batch (high-intensity) became operational, threshold increased quickly
 - Generally threshold moves with the beam intensity
- At the end of the run, the threshold was beyond maximum MI intensity
 - ~ 42e12
Instabilities in the MI

- High-intensity beam in the Main Injector is subject to a resistive-wall instability
 - Any search for electron cloud instability must be disentangled from this
- Damper system needed to prevent catastrophic beam loss, even at marginal intensities
 - Digital, bunch-by-bunch system
- Studied instability threshold variation with intensity
 - Generally, the scaling is linear in damper gain, which is what is expected for RWI
 - ECloud would be a nonlinear rise at high-intensity
Mitigation Options for MI

- Main Injector is 60% dipole, 25% quadrupole
 - < 5% bare straights, so solenoids are ineffective
- Beam pipe is captured in magnets and aperture is tight
 - Electrodes are not an option
- Coating is most straightforward solution for Project X
 - Though certainly not easy or inexpensive
 - Would try to do this in the tunnel, but would require at least moving the magnets and breaking vacuum in many places
Electron Cloud Experimental Station - 2009

Major upgrade installed summer 2009
- 2 New experimental Chambers
 - Identical 1 m SS sections, except that one is coated with TiN
- 4 RFAs (3 Fermilab & 1 Argonne)
- 3 microwave antennas and 2 absorbers
 - Measure ECloud density by phase delay of microwaves

- Primary Goal: validate coatings as potential solutions for Project X
- Secondary Goals:
 - Remeasure threshold and conditioning
 - Further investigate energy-dependence
 - Measure energy spectrum of electrons
 - Test new instrumentation
 - Directly compare RFA and Microwave
 - Measure spatial extinction of ECloud
TiN Coating

- TiN is a standard coating for ECloud mitigation
- Coating of test chambers performed at BNL
- Will need to adapt this procedure for \textit{in situ} coating of 3000 m of Main Injector
- Also looking at adopting the SLAC procedure
Electron Detectors

- Retarding field analyzers
 - Based on Argonne design
- Maximize signal with enlarged area and by removing ground grid
 - Ground is provided by the beam pipe
- Shaping of electrodes optimizes energy filter performance
 - Also, more hermetic
- Amplifier/filter in tunnel
 - Better-quality cables to surface
Threshold Measurement

- Data collected on every Main Injector cycle
- Electron cloud time structure shows a peak flux near the minimum bunch length
- TiN showed immediately superior results to stainless steel

- Record the maximum current for every cycle
- Plot vs beam intensity
 - Very strong threshold behavior
- Fit to extract a threshold factor
 - Only use data from a short period of time
Evolution of Thresholds

- Thresholds increase over time
 - Best measure is the total absorbed electron dose
 - Integration under the data curve from the RFAs
- Increase of threshold is evidence of conditioning
 - Surface chemistry is changing to our advantage
 - Limited by the available intensity in the Main Injector
 - ECloud eventually disappeared for TiN
 - Continued at a low level for stainless
Conditioning in MI

• Why does the material condition well in MI?
 ➢ Especially, in comparison to other proton rings like PSR or SNS

• The major differences are the beam RF structure and the acceleration cycle
 ➢ MI h=588 vs h=1 for SNS & PSR
 ➢ MI has high-intensity beam for ~ 50,000 revolutions each second
 • SNS & PSR have only a few hundred or thousand turns

• In total, the same maximum cloud densities in the machines will produce about 50,000 times more electron flux at the beam pipe of the Main Injector than the others
 ➢ The dose is too low at other machines to condition in a similar way
Carbon Pipe

- CERN is very interested in amorphous carbon
 - See it as superior to TiN in perhaps not requiring as much conditioning
- They built a chamber for us in short order and we installed it in the MI in 2010
 - Replacing our TiN test chamber
 - Conditioning history made like with TiN
- Initial results were similar to TiN (required conditioning)
- Tests were interrupted by a vacuum leak
 - Small leak at the edge of carbon pipe
 - Seems to have poisoned a portion of the surface
 - Detector close to leak saw behavior that was worse than SS until very late in conditioning
 - Detector further away showed behavior more similar to TiN

![Graph: X0 vs Absorbed Electrons per cm²](Image)
Microwave Measurements

- **ECloud induced phase shift**
 - Carrier is injected with BPMs at just above the cutoff for the elliptical beam pipe
 - Beam modulates the ECloud
 - ECloud cause PM of carrier
 - PM accumulates over the distance

- **Sideband, zero-span, and direct phase measurements**
 - Sidebands come from modulation, give intensity (convolved with harmonic information)
 - Zero-span gives a cycle-wide measurement of intensity
 - Very good time-resolution with direct phase
 - Issue is getting enough transmission

- **May allow measurement in dipole sections**
 - No room for RFAs in Main Injector Dipoles
Problems with Microwave Measurements to Date

- The microwave technique is initially attractive, but suffers two significant flaws:
 1. **Non-Locality**: the measurement will most often not be representative of the targeted area, but a much larger expanse of beam pipe
 2. **Normalization**: a direct extraction of the electron density has been elusive

- Chief problem is reflection
 - Propagating a wave slightly above cutoff is asking for reflections
 - Numerous reflections inside and outside of the target region create many, longer paths from the transmitter to the receiver

- Observed this with the placement of ferrite absorbers around the measurement region
 - Transmission of carrier dropped x20, and ECloud modulation was not extractable

- Plan a new installation:
 - Create a cavity with obstructions in the beam pipe, only slightly narrowing the aperture
 - Prevents carrier from escaping the measurement region, providing locality
 - Allows use of a carrier further above the beampipe cutoff
 - Use reflections within the cavity to enhance the signal in a controlled way
 - Allow normalization
 - Design of new station is in progress
Direct SEY Measurement

• SEY measurement station from Cornell
 ➢ Adapted from SLAC
 ➢ Allows in situ measurement of SEY on samples
• Place sample “buttons” of materials as portion of beampipe circumference
 ➢ Beampipe made of standard materials – for us: Stainless 316L
• Directly measure the SEY of the sample
 ➢ SLAC did this by removing the button and testing in a surface physics lab
 ➢ At Cornell, it has been modified for in situ measurement
• Will allow comparison between conditioning in electron/positron ring and our proton ring
• Other considerations:
 ➢ Change pieces without breaking accelerator vacuum
 ➢ Monitor electron flux for scrubbing history
 ➢ Differential scrubbing can be factored out
• Stations have been built and we are preparing for installation
In Situ SEY TestStand

Isolation Valve
Test Position
Linear Motion in vacuum
Electrical isolation
Sample
Electron Gun

March 28, 2011
Particle Accelerator Conference
Summary

• Electron cloud build up has been observed at the Fermilab Main Injector
 ➢ However, this cloud density has not negatively affected the beam
 ➢ Threshold behavior is qualitatively in agreement with simulation predictions
• Program is wide-ranging, but primary goal is to plan for Project X
• Experiments have shown that MI pipe and coatings condition with beam exposure
 ➢ Coatings condition more quickly and effectively than bare beam pipe
 • Both TiN and amorphous carbon appear similar, though carbon may be more susceptible to contamination
 ➢ Ultimate conditioning has been limited by beam intensity
 ➢ Coating is a viable option for the Main Injector
 • Lingering questions are whether it is necessary, and what procedure is best
• Further experiments needed for Project X
 ➢ Direct SEY measurement
 ➢ Consistent understanding with simulation
 ➢ Measurements with dipole magnets, where possible
Electron Cloud Experiments at Fermilab: Formation and Mitigation

Bob Zwaska
Fermilab

March 28, 2011
Particle Accelerator Conference
Simulation

• Have had extensive input from several codes, two make most of the impact:
 ➢ VORPAL (Tech-X & P. Lebrun f/ Fermilab)
 ➢ POSINST (M. Furman, LBL)

• Some future needs:
 ➢ Simultaneous (or nearly so) simulation of cloud build-up and instabilities
 ➢ Guidance for SEY experiments
 • Electron flux and spectrum
 ➢ Updates of expectations with conditioning
 ➢ Understanding of instrumentation

• Codes have focused on simulating the ECloud buildup
 ➢ Our approach has been to prevent crossing the transition to high density
 ➢ An extension for simulation would be to approach the question of directly simulating the beam instability with the electron cloud
 • Computationally challenging, but may give us leeway with our mitigations