Overview of Seeding Methods for FELs

Paul Scherrer Institute
Sven Reiche

Paul Scherrer Institute
Sven Reiche
Overview of Seeding Methods for FELs
• General Features of Seeded FEL
• SASE FEL as a Background Process
• Direct Seeding Methods
• Electron Beam Manipulations
• Cascades and Hybrid Configurations
• Self-Seeding Methods
• Summary
In Comparison to SASE FELs seeded FELs can offer the improvement:

1. Control/Improvement of the Longitudinal Coherence
2. Improved Brilliance
3. Energy Stability of FEL Output Pulse
4. Spectral Stability at Selected Frequency
5. Synchronization with External Source (Pump-Probe)
6. Ability to Increase FEL Efficiency with Taper
7. FEL becomes shorter
Disadvantage of Seeded FELs

FEL Performance gets more sensitive to electron beam fluctuation:

<table>
<thead>
<tr>
<th>SASE FEL</th>
<th>Seeded FEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Jitter shifts central wavelength but keeps photon number almost unchanged</td>
<td>Huge fluctuation in output power when energy jitter becomes comparable to FEL bandwidth</td>
</tr>
<tr>
<td>FEL performance unchanged from arrival time</td>
<td>Temporal overlap problems unless seed signal is longer</td>
</tr>
<tr>
<td>Power growth flattens at saturation with a slight growth</td>
<td>Post Saturation Oscillation of FEL power</td>
</tr>
</tbody>
</table>

SwissFEL @ 7 nm
Synchronization to External Seed Signal

Seed pulse must be shorter than electron bunch length

Otherwise FEL pulse length is defined by electron bunch length, including bunch arrival jitter.

Seed pulse must be longer than cooperation length

Pulse will be stretched by FEL process. Identical performance than single spike SASE operation.

Goal is mutual exclusive to maximum brilliance

Maximum brilliance is given by bunch length and requires a seed signal longer than bunch length.

Arrival time jitter must be less than bunch length

Otherwise there is a chance of missing overlap. Bunch will laser in SASE mode.
• Well-defined input signals allows to optimize the tapering profile

• However side-band instability will modulate profile envelope

• Slippage effects stops the trapping of the electrons

Example: LCLS (self-seeded)
Towards shorter wavelengths the typical beam energy increases and the shot noise signal gets larger.

Example: 5 nm @ 2 GeV → $P_{sn} \sim 100$ W

(N_λ: #electrons/wavelength, ρ: FEL Parameter)

Coupling to Growing Mode

$$P = \frac{P_0}{9} e^{z/L_g}$$

Coupling to FEL Mode

$$P_{sn} = \frac{3\sqrt{4\pi \rho^2 P_{beam}}}{N_\lambda \sqrt{\ln(N_\lambda / \rho)}} \propto \frac{\gamma}{\sqrt{\alpha - \ln \gamma}}$$

Matching FEL Bandwidth

Example: HHG (a)

Seed Power x Transport Loss x Growing Mode x FEL Mode x Bandwidth > Contrast x Shot Noise

- Seed Power <10%
- Transport Loss 11%
- Growing Mode <50%
- FEL Mode 10-100%
- Bandwidth >10

$P_{seed} > 2000 P_{sn}$
High Harmonic Generation (HHG) Seeding

- 3 step process in noble gases
- High energetic photons, phase locked to drive laser
- Coherence properties inherited from drive laser
- Limited to short pulses due to ionization of gas

3 Step Process of HHG

1. tunneling ionization
2. propagation
3. recombination harmonic emission

Property of Kenichi L. Ishikawa
Proof-of-Principle Experiment

Test Injector at SCSS (Spring 8)
Drive Laser at 800 nm
HHG Harmonics: 160 nm (n=5)

HHG Seed is amplified by a factor of about 500

SASE signal is 2600 times weaker than seeded FEL (good contrast of seed to shot noise)
HHG sources as seeds for FEL have been demonstrated at various experiments with the current record of 39 nm [C. Lechner, et al, Proc of FEL Conference 2012]

However further progress requires significant R&D in the source development:

- Decrease the wavelength (extending the plateau of the HHG process)
- Increase the efficiency of HHG process to overcome increasing shot noise power
- Control/preserve the phase front and mode content of the HHG source
- Control the bandwidth of a given harmonic to match FEL bandwidth

Wavelengths below 20 nm difficult to achieve
Best for sync FEL pulse to external signal
Very little increase in brightness
(Single-spike SASE might be better alternative)
• Induced energy modulation at longer wavelength is changed into rich harmonic current content after compression with a chicane.
• To avoid smearing out the energy modulation must be larger than intrinsic energy spread
• A selected harmonic is picked up with a succeeding undulator.

\[
\text{Bunching:} \quad b_n = J_n \left(\frac{n}{\lambda} R_{56} \frac{\Delta E}{E} \right) e^{-\frac{1}{2} \left(\frac{n R_{56} \sigma_E}{\lambda E} \right)^2}
\]

\[
\Delta E \approx n \cdot \sigma_E
\]

\[
\frac{\Delta E}{E} = \frac{n \sigma_E}{E} < \rho
\]
HGHG Experiments

Proof-of Principle Experiment (SDL)

A. Doyuran et al, PRL 86 (2001) 5902

FERMI @ Elettra – User Facility based on HGHG

Cascading HGHG

Same Bunch Technique

SwissFEL Design Study (200 nm \rightarrow 22.2 nm \rightarrow 4.4 nm)

Begin Stage 2 (200 nm)

Begin Stage 3 (22.2 nm)

End Stage 3 (4.4 nm)

Fresh Bunch Technique (e.g. FEL II at FERMI@Elettra)

Modulator λ

Radiator λ/n

Delay

Modulator λ/n

Radiator λ/n
Strong progress in the last year mostly due to the success of FERMI. Wavelengths down to 4 nm have been achieved.

However an HGHG FEL cannot be optimized much for pulse energy:

- Only fresh bunch feasible for cascades due to the tremendous sensitivity of same bunch cascades
- Long bunches reduces the current and thus the saturation power
- Only a subsection of the bunch contribute to the final radiation stage (similar to HHG seeds)
- Energy spread of initial beam has to be less than in SASE case, limiting the use of laser heaters in the injector and machine.

Wavelengths down to 1 nm seems feasible

Good for sync FEL pulse to external signal

Not optimized for pulse energy.
Basic Idea [D. Xiang and G. Stupakov, PR STAB 12 (2009) 030702]:

- First stage: Modulation and overcompression to generate energy bands
- Second stage: HGHG principle but spacing of bands defines harmonics

High efficiency for bunching

\[b_{\text{max}} = \frac{0.39}{m^{1/3}} \]
Experiments for EEHG

[D. Xiang et al PRL 105 (2010) 114801]

\[\lambda_1 = 759 \text{ nm}, \quad \lambda_2 = 1590 \text{ nm} \]

Little Chirp

(a) Laser 2 off

(b) Laser 1 off

(c) H2, E0

Strong Chirp

(a) Laser 2 off

(b) Laser 1 off

(c) E1, E2, H4, E3, H2, H3

\[\lambda_1 = 1047 \text{ nm}, \quad \lambda_2 = 1047 \text{ nm} \]

Wavelength vs chirp

- Measurement
- Simulation
Although scaling towards shorter wavelength is promising, there are practical reasons for the higher harmonic numbers:

- Total width of energy modulation is limited by FEL process ($\Delta \gamma / \gamma < \rho$)
- Number of lines defines harmonic m with an average line spacing of $\delta \gamma / \gamma < \rho / m$
- Hyperfine structure can be blurred out by:
 - Quantum Fluctuation of the incoherent emission in modulator and chicane
 - Favors low magnetic field and long chicanes
 - Intrabeam scattering [G. Stupakov, FEL 2011]
 - Favors compact chicanes

Wavelength limit at about 1 nm

Good control of electron chirp

1st chicane can lengthen bunch

Dependence of IBS on emittance @ 1 nm
Basic Idea:
• 1st stage operates as SASE FEL, but stopped before saturation
• Radiation is filtered, introducing longitudinal coherence
• Delay of radiation field is matched with delay electron beam with a magnetic chicane. The chicane removes also any induced bunch, removing the imprint of SASE in the bunch (quasi fresh bunch)
• Beam and radiation are overlapped in a second stage, operating as an FEL amplifier.

Idea brought up again for hard X-ray [G. Geloni, Jour. Of Modern Optic 58:16 (2011) 1391], using the transmission around the stop band of a Bragg reflection (see next slide).

More compact design for soft X-ray [Y. Feng, LCLS] makes self-seeding feasible for longer wavelength
Example Performance for SwissFEL at 1 nm

First Stage

Second Stage

Profile

Spectrum

Profile

Spectrum
Self-Seeding for Hard X-rays

Transmission

Difference in these bumps creates a trailing beat wave

Diamond (400) – 100 μm

Time Profile of Radiation Pulse

New Seed Location

Original Pulse

Trailing Beat Wave

Bunch Delay by Chicane
Proof-of Principle Experiments

- Wavelength: 1.5 nm
- Diamond Crystal, using (400) reflection
- Reduction of Bandwidth by factor 40 observed
- Output energy very sensitive to electron energy jitter

Single-Shot Spectrum

Electron Bunch Delay
Mode Locked FEL (N.R. Thompson et al, PRL 100 (2008) 203901)

- Increase Slippage by delay lines
- Undulator modules shorter than one gain length
- Lock with a modulation synched to slippage per stage
- Single mode selectable by increasing delay (1,2,4,8 etc) → iSASE [J. Wu et al, FEL Conference 2012]
For high K-values, the FEL is operated at the higher harmonics n.

- Phase shifter disrupts fundamental by $\Delta \phi = m \frac{2\pi}{n}$ with m is integer, optimized for best suppression of fundamental.
- Requires rather short undulator modules less than two gain length.

Enhanced slippage and thus narrow bandwidth

Full Undulator: [E. Schneidmiller, DESY 12-070]

Sub-section with high harmonic (pSASE): [D. Xiang et al, PR STAB 16 (2013) 010703]

Example for SwissFEL Soft X-ray at 2 nm

$\frac{L_g}{\lambda_u} \propto \frac{\lambda_u}{(\lambda_u K JJ_n)^{\frac{1}{2}}} \left(\frac{\lambda_u}{K JJ_n} \right)^3$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value 1</th>
<th>Value 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_u</td>
<td>4 cm</td>
<td>5 cm</td>
</tr>
<tr>
<td>K</td>
<td>1</td>
<td>2.3</td>
</tr>
<tr>
<td>n</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>JJ_n</td>
<td>0.8</td>
<td>0.4</td>
</tr>
<tr>
<td>L_g</td>
<td>2.5 m</td>
<td>2.5 m</td>
</tr>
</tbody>
</table>
Comparison and Summary

<table>
<thead>
<tr>
<th>Method</th>
<th>Direct Seeding (HHG)</th>
<th>HGHG Cas. or EEHG</th>
<th>Self-Seeding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wave Length Limit</td>
<td>>20 nm</td>
<td>> 1nm</td>
<td>> 0.1 Å</td>
</tr>
<tr>
<td>Synchronization</td>
<td>Good</td>
<td>Good</td>
<td>None</td>
</tr>
<tr>
<td>Brilliance</td>
<td>Similar to SASE (penalty from seed BW)</td>
<td>Slightly better (penalty from lower current)</td>
<td>Much better than SASE</td>
</tr>
<tr>
<td>Pulse Length</td>
<td>~10 fs</td>
<td>10 – 100 fs</td>
<td>As electron bunch</td>
</tr>
<tr>
<td>Signal-to-Background</td>
<td>Poor</td>
<td>Moderate - Good</td>
<td>Excellent</td>
</tr>
<tr>
<td>Complexity</td>
<td>Moderate (excluding source)</td>
<td>High</td>
<td>Moderate</td>
</tr>
<tr>
<td>Electron Beam Requirement</td>
<td>Arrival time and energy stability</td>
<td>Arrival time and energy stability, lower energy spread</td>
<td>Energy stability</td>
</tr>
<tr>
<td>Undulator Length</td>
<td>Slightly less than SASE FEL</td>
<td>Comparable and longer than SASE FEL</td>
<td>50% longer than SASE FEL</td>
</tr>
</tbody>
</table>
Seeding is very promising to improve the quality of FEL as a user facility.

Several methods are proposed for seeding and successfully demonstrated down to 1 Ångstrom.

Except for the synchronization with external signal, self-seeding is most promising and robust method with no inherent limitation below 1 nm.

Seeding at very short wavelength are very limited. Novel ideas emerging to improve performance of seeded FELs