Recent Results From CesrTA Intrabeam Scattering Investigations

Speaker: Michael Ehrlichman

Avi Chatterjee, Walter Hartung, Dan P. Peterson, Nate Rider, David Rubin, David Sagan, James Shanks, Suntao Wang, CLASSE, Ithaca, New York, USA
Overview

- Description of CESR and CesrTA program
- Intrabeam scattering (IBS) theory and our model
- Results of IBS experiments
 - Size vs. current at various energies and vertical beam sizes
 - Size vs. RF voltage
- Vertical data with puzzling current dependence
- Directions and conclusion
CesrTA Program

- CesrTA is a reconfiguration of CESR dedicated to studying the physics and technology of stored e+/e- beams
 - 768 m
 - Twelve 1.9 T damping wigglers
 - 1.8 to 5.3 GeV
 - ~3 nm·rad by ~10 pm·rad
 - Independently powered quadrupoles
 - Turn-by-turn, bunch-by-bunch instrumentation

- Multi-bunch studies
 - Electron Cloud
 - Fast Ion

- Single-Bunch Effects
 - Intrabeam Scattering (IBS)
 - Coherent Tune Shift
 - Incoherent Tune Shift
 - Optics Correction
• Machine Setup
 – 6 or 12 wigglers powered
 • 100 ms or 50 ms damping time (500 ms without wigglers)
 – 6.3 MV RF provided by four 500 MHz superconducting cavities
 • Adjustable down to ~1 MV
 • ~10 mm bunch lengths
 – Single-bunch charges from \(\sim 1 \times 10^9 \) up to \(\sim 1 \times 10^{11} \) particles
 • Lifetime dominated by Touschek scattering

• Beam Physics
 – Intrabeam Scattering
 • \(\varepsilon_x \) increase of \(\sim 300\% \) (~1 m horizontal dispersion)
 • \(\varepsilon_y \) increase of < 20\% (very low vertical dispersion and coupling)
 – Potential Well Distortion
 – Coherent Tune Shift -0.5 kHz/mA
 • Resonance lines up To 6\(^{th}\) order observed
 – Vertical Behavior is Puzzling
 • Anomalous blow up at high current
Multiple small-angle scattering events among the particles that compose a bunch couples single-particle emittances, and in the presence of dispersion can increase the total emittance of the beam.

Results in a current-dependent emittance
- A lower bound on beam size for a desired current, or an upper bound on current for a desired size

Limits:
- Luminosity lifetime in hadron machines
- Per-bunch luminosity in a linear collider
- Peak brilliance in a light source

IBS in e⁺/e⁻ accelerators, in contrast to hadron machines
- Fast rise time due to high density of short bunches
 - Increased equilibrium size
- Gaussian Core + Lightly Populated Tails (theory modified by tail-cut)
- Growth rates have γ⁻⁴ dependence
• Formalism by Kubo and Oide
 – Generalization of Bjorken & Mtingwa’s formalism
 – Uses eigen-decomposition of beam Σ-matrix, rather than Twiss parameters

$\Sigma = \begin{pmatrix}
\langle xx \rangle & \langle xy \rangle & \langle xz \rangle & \langle xp_x \rangle & \langle xp_y \rangle & \langle xp_z \rangle \\
\langle yz \rangle & \langle yy \rangle & \langle yz \rangle & \langle yp_x \rangle & \langle yp_y \rangle & \langle yp_z \rangle \\
\langle zx \rangle & \langle zy \rangle & \langle zz \rangle & \langle zp_x \rangle & \langle zp_y \rangle & \langle zp_z \rangle \\
\langle px \rangle & \langle px y \rangle & \langle px z \rangle & \langle p x p_x \rangle & \langle p x p_y \rangle & \langle p x p_z \rangle \\
\langle py \rangle & \langle py y \rangle & \langle py z \rangle & \langle p y p_x \rangle & \langle p y p_y \rangle & \langle p y p_z \rangle \\
\langle pz \rangle & \langle pz y \rangle & \langle pz z \rangle & \langle p z p_x \rangle & \langle p z p_y \rangle & \langle p z p_z \rangle
\end{pmatrix}$

– Natural handling of coupling
 • Normal mode emittances
 • No “coupling” parameters

– Incorporates tail-cut
 • Central Limit Theorem
 • Excludes rare, large-angle scattering events (< 1 event/particle/τ_{damp})
Simulation Overview

• Cornell’s BMAD Simulation Suite (normal modes env.)
• Element-by-element model of CesrTA lattice including multipole terms and field-map wiggler models
• IBS blow up calculated by Kubo & Oide formalism
• Potential well distortion (PWD) calculated by Billing’s effective impedance formalism
 – Current-dependent effective RF voltage
• Beam sizes obtained from beam Σ-matrix
•Simulation has 3 significant free parameters
 1. Zero-current horizontal emittance
 2. Zero-current vertical emittance
 3. Effective longitudinal inductive impedance
• Working point is selected
 – Vertical coherent tune changes by ~4 kHz from low current to high current
• Apply optics corrections
 – Phase and Orbit
 – Dispersion and Coupling
• If desired, increase ε_{y0} using closed coupling and dispersion bumps
• Charge single bunch to $>10^{11}$ particles
• Cut injection and take beam size measurements as the beam decays
 – Vertical by x-ray beam size monitor
 – Horizontal by visible light beam size monitor
 – Longitudinal by streak camera
• Decay due to Touschek lifetime
 – Experiment takes about 30 minutes
2.1 GeV Results

<table>
<thead>
<tr>
<th>Input Parameters</th>
<th>Result at high current</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run ID</td>
<td>ε_y_0 (pm)</td>
</tr>
<tr>
<td>Low ε_y_0</td>
<td>12.7 - 17.9</td>
</tr>
<tr>
<td>Med ε_y_0</td>
<td>57.1 - 67.2</td>
</tr>
<tr>
<td>High ε_y_0</td>
<td>200.8 - 219.2</td>
</tr>
</tbody>
</table>

*7.5 \times 10^{10} part. \approx 12 \text{ nC} \approx 5 \text{ mA}
2.3 GeV Results

- IBS rates have γ^{-4} dependence

<table>
<thead>
<tr>
<th>Run ID</th>
<th>ε_{y0} (pm)</th>
<th>ε_{x0} (nm)</th>
<th>ε_x (7.5×10^{10}) (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low ε_{y0}</td>
<td>7.01-11.2</td>
<td>5.7</td>
<td>9.41</td>
</tr>
<tr>
<td>High ε_{y0}</td>
<td>62.0-72.6</td>
<td>5.6</td>
<td>7.06</td>
</tr>
</tbody>
</table>
2.5 GeV Results

<table>
<thead>
<tr>
<th>Run ID</th>
<th>(\epsilon_{y0}) (pm)</th>
<th>(\epsilon_{x0}) (nm)</th>
<th>(\epsilon_x (7.5 \times 10^{10})) (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low (\epsilon_{y0})</td>
<td>9.9 – 14.6</td>
<td>4.4</td>
<td>6.83</td>
</tr>
<tr>
<td>High (\epsilon_{y0})</td>
<td>47.6 – 56.9</td>
<td>4.5</td>
<td>5.62</td>
</tr>
</tbody>
</table>
• ~1 m RMS horizontal dispersion leads to significant horizontal blow up
• IBS rise times have γ^{-4} dependence

<table>
<thead>
<tr>
<th>Energy (GeV)</th>
<th>ϵ_y (pm)</th>
<th>ϵ_x (nm)</th>
<th>$\epsilon_x \times 10^{10}$ parts. (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>12.7 – 17.9</td>
<td>3.1</td>
<td>7.83</td>
</tr>
<tr>
<td>2.1</td>
<td>57.1 – 67.2</td>
<td>3.2</td>
<td>5.73</td>
</tr>
<tr>
<td>2.1</td>
<td>200.8 – 219.2</td>
<td>3.4</td>
<td>4.69</td>
</tr>
<tr>
<td>2.3*</td>
<td>7.01 – 11.2</td>
<td>5.7</td>
<td>9.41</td>
</tr>
<tr>
<td>2.3*</td>
<td>62.0 – 72.6</td>
<td>5.6</td>
<td>7.06</td>
</tr>
<tr>
<td>2.5</td>
<td>9.0 – 14.6</td>
<td>4.4</td>
<td>6.65</td>
</tr>
<tr>
<td>2.5</td>
<td>47.6 – 56.9</td>
<td>4.5</td>
<td>5.57</td>
</tr>
</tbody>
</table>

*Note: 2.3 GeV lattice uses distinct horizontal optics

• 253% Blow Up
• 165% Blow Up
• 151% Blow Up
- Measurements at 0.5 and 1.0 mA
 - IBS seen in larger sizes at 1.0 mA
- Three Distinct Lattices (all ideal)
 1. Original CesrTA Lattice
 2. Lattice with x-z tilt minimized
 3. Lattice with half the damping and no tilt
- See TUPME065 from this conference for more details on x-z coupling studies
• For a given vertical emittance, current, and wiggler field what is the energy to minimize horizontal emittance?
 • ε_{x0} goes as γ^2
 • IBS rates go as γ^{-4}
• Not consistent with IBS model
 – IBS size vs. current plot would be “log like”
• Species-independent
• Sensitive to betatron and synchrotron tunes
• Not sensitive to chromaticity
• FFT of vertical centroid and size does not show a strong signal above noise
• Energy spread measured to be constant, no threshold behavior seen in energy spread vs. current.
• Seen even in large beams
• Coupling (Cbar12) vs. current measured to be constant
• Coherent tune shift plays a part, but not the whole story
• Incoherent tune shift is a suspect, cannot be whole story
 – direct space charge
• Beam size vs. current with different damping rates.

• Measurements on beams with global coupling.
 – Significant vertical IBS growth rate.

• Measurements at 1.8 GeV.
 – Requires instrumentation development.

• Understanding vertical behavior at high current.
 – Model higher current behavior.

• Lower emittances.
• IBS data has been gathered over a range of energies, particle densities, and RF voltages.
• Model developed that gives good agreement with horizontal and longitudinal data.
 – IBS and PWD effects
• Model for high-current vertical data yet to be found.
 – Stop by TUPME065 if you have any ideas
• Directions: global coupling, various damping rates, 1.8 GeV, and lower vertical emittance