THz ELECTRON-PULSE TRAIN DYNAMICS IN A MeV PHOTOINJECTOR

F.H. Chao¹, C.H. Chen¹, Y.C. Huang¹, P.J. Chou²

¹High energy OPtics and Electronics Laboratory, NTHU, Hsinchu 30013, Taiwan
²National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan

IPAC, Shanghai, May 12-17, 2013
Outline

• Motivations
• Electromagnetic fields in an RF accelerator
• Evolution of an ultra-short electron bunch
• Initial Phase Compensation:
 Generation of an ultra-short electron pulse
 Generation of ultra-short electron-pulse train
• Schemes of initial phase compensation
• Conclusion
Motivations

- Electron-pulse train:

 - Electron micro-bunches
 - Electron macro-bunch

Narrow-line coherent radiation

Radiation spectrum

\[
\omega / \omega_b \quad \omega_b / N_p
\]
A soft X-ray FEL with 10-time reduced size
(Fu-Han Chao et al., Proceedings, FEL2011)

Beam:
- Beam energy = 150 MeV
- Peak current = 3.3 kA
- Energy spread = 3x10^{-4}
- Emittance = 2-mm-mrad
- Initial bunching factor = 10 ppm

Undulator:
- Period = 5 mm
- Gap = 0.8 mm
- Undulator parameter = 0.4
- Length = 3 m

Radiation:
- Wavelength = 32.2 nm
- Power = 0.2 GW
Motivations

I. Bunch width \gg period
II. Bunch width \sim period
III. Bunch width \ll period

Longitudinal distribution

- Bunch width \gg period
- Bunch width \sim period
- Bunch width \ll period

Bunching factor spectra

- Bunching frequency (THz)
- Comb-like distribution
Electromagnetic fields in an RF accelerator

- The RF fields in a standing-wave accelerator are radial-dependent. The field components of the dominate mode are given by:

 Longitudinal field

 \[E_z(r, z, t) = E_0 J_0(\eta_0 r) \cos(k_0 z) \sin(\omega t + \phi_0) \]

 Transverse fields

 \[E_r(r, z, t) = E_0 k_0 r \frac{J_1(\eta_0 r)}{\eta_0 r} \sin(k_0 z) \sin(\omega t + \phi_0) \]

 \[B_{\theta}(r, z, t) = E_0 \frac{\omega r J_1(\eta_0 r)}{c^2 \eta_0 r} \cos(k_0 z) \cos(\omega t + \phi_0) \]
Evolution of an ultra-short electron bunch

- **Assumptions:**
 1. Longitudinal distribution: $n_i(\phi) = \delta(\phi - \phi_0)$ at cathode.
 2. Transverse distribution: $n_i(r) = \exp\left(-\frac{r^2}{2\sigma_r}\right)$, σ_r: RMS bunch radius.
 3. No space charge effects.
Evolution of an ultra-short electron bunch

- PARMELA simulation results (w/o space charge effects)

\[\frac{\Delta r}{\Delta \phi} = \text{const.} > 1 \]
Both the widths and radius of the accelerated electron bunch are broadened!

The transverse distribution of electrons is uniformly broadened by M times during particle acceleration!
Initial Phase Compensation

The longitudinal phase spread of the accelerated electrons due to the non-uniform RF fields can be compensated!
Initial Phase Compensation

The longitudinal phase spread of the accelerated electrons due to the non-uniform RF fields can be compensated!
Generation of an ultra-short electron pulse

- Applications of ultra-short electron pulse:
 1. Coherent radiation
 2. Ultrafast electron diffraction (UED) or Ultrafast electron microscopy (UEM)

\[
\text{Power} \propto N^2
\]
Generation of ultra-short electron pulse train

- **Without initial phase compensation**: The non-uniform RF fields broaden the longitudinal bunch width of the electron micro-bunches and reduce the bunching factor of the accelerated electron-pulse train.

- **PARMELA simulation results (w/o space charge effects):**

 ![Graph 1](Cathode)

 - Radial position r_f (mm)
 - Correction $\Delta \phi$ (deg.)
 - Bunching factor spectrum
 - Bunching frequency (THz)

 ![Graph 2](Accelerator exit)

 - Radial position r_f (mm)
 - Correction $\Delta \phi$ (deg.)
 - Bunching factor spectrum
 - Bunching frequency (THz)
Generation of ultra-short electron pulse train

- **With initial phase compensation:** The debunching of electron micro-bunches can be overcome. An excellent bunching spectrum of an electron-pulse train can be retained at the accelerator exit.
Generation of ultra-short electron pulse train

No space charge eff.

Total charge: 5 pC

Total charge: 10 pC
Schemes of Initial Phase Compensation

1. Adjustable laser pulse front shaping
 - Ultrafast laser pulses with aberrations
 - Deformable mirror
 - Optical lenses
 - Planar pulse front (corrected laser pulses)
 - Curved pulse front

2. Slightly concave photocathode
 - Concave photocathode
 - Ultrafast laser pulses
Conclusion

- The non-uniform RF fields broaden the electron bunch width in both the longitudinal and transverse directions during particle acceleration.
- With the non-uniform RF fields, it is hard to retain the width of an accelerated electron pulse in the fs regime.
- We proposed to compensate the phase spread of the electrons by changing the initial phases of the electrons over r.
- With initial phase compensation, the longitudinal bunch width of the accelerated electron bunch could be retained in the fs regime when the space charge effects are not significant.
- It is possible to produce a periodic electron-pulse train with a high bunching factor for a bunching frequency at tens of THz.
Thank you for your attention!