UPGRADES AND CONSOLIDATION OF THE CERN AD FOR OPERATION
DURING THE NEXT DECADES

T.Eriksson, M.-E. Angoletta, L.Arnaudon, J.Baillie, M.Calviani, F.Caspers, L.Joergensen,
R.Kersevan, G.Le Godec, R.Louwerse, M.Ludwig, S.Maury, A.Newborough, C.Oliveira,
G.Tranquille, CERN, Geneva, Switzerland

Abstract

As the ELENA project is now well underway, focus is turned to the Antiproton Decelerator (AD) itself. Most of the machine’s key components are in operation since more than 25 years and a substantial consolidation program is now being launched in view of continued operation beyond 2025.

Over the course of the next few years a progressive consolidation of the AD Target area, the AD ring and all associated systems will take place. Several investigations have recently been performed in the target area with the objective of establishing the radiation environment and the sensitivity of the antiproton production to potential misalignment of the production elements. Identification of reliability and serviceability issues of the AD ring components and associated systems has been done and will continue during the 2013 shut-down. Planned and on-going consolidation activities are also discussed with emphasis on stochastic and electron beam cooling, instrumentation, RF systems, vacuum, magnets, power converters and beam transfer equipment.

One of these, the recently approved ELENA ring [1], is a small post-decelerator which will be installed in the existing AD building. ELENA will greatly increase ejected beam density and intensity thereby increasing the number of trapped antiprotons at the experiments by up to two orders of magnitude. To reliably produce antiprotons and deliver them to ELENA for the next 10–20 years, all AD sub-systems have to be renovated or renewed. In total, a budget of some 20 MCHF has been allocated for AD consolidation during the period 2013 to 2019.

Layout of AD, ELENA and the experimental areas can be seen in Fig. 1.

PRODUCTION TARGET AREA

The AD target area (see Figure 2) is undergoing important consolidation activities during LS1; this is the first step of a general overhaul of the antiproton production area, which will continue in the next years in the “ELENA era” of the AD machine exploitation. The most significant update will involve the control system of the target and horn support carriages, which have not been upgraded since their conception in the late 80s. A control system based on PLCs will be implemented, allowing for a safer and more reliable operation. In support of this activity, a vast campaign of FLUKA Monte Carlo [2] simulations – cross-checked by in-situ radiation and particle fluence measurement – has been performed [3]: these simulations have confirmed the effect of the magnetic spectrometer in selecting a narrow antiproton energy for injection in the AD machine, allowed to estimate the energy deposition in the various elements of the target area (in view of a future cooling system update) and enabled to quantify the decrease in antiproton fluence for a horn misalignment (the most critical one) (roughly 30/40% for a 2 mm transversal plane shift).

A series of machine development tests have been also performed in the AD target area, varying the horn current intensity as well as the distance between target and horn (i.e. varying the focusing length of the magnetic lens). These allowed optimizing the operational parameters of the target area as well as studying the sensitivity of the antiproton production. The results of this “phase-space” scan have been cross-checked by means of FLUKA Monte Carlo simulations, yielding a general agreement within 20/30%.

An improvement of the target, focussing horn and magnet handling system as well as of the local and remote

INTRODUCTION

During more than 10 years of regular operation, CERN’s Antiproton Decelerator (AD) has supplied the successful physics program with low-energy antiproton beams at 5.3 MeV kinetic energy. For the medium and long-term future, several options exist for upgrades and consolidation of the facility as well as for extension of the physics program.
inspection capabilities is also being performed. The hydraulic and electronics of the existing service vehicle – capable of remotely disconnecting the target and horn carriages as well as the magnetic spectrometer dipoles/quadrupoles – has been completely refurbished. In collaboration with other CERN programs, a dedicated remotely manipulated robot will be used in the area for general inspections, reducing the dose rate for personnel intervening in the area.

ELECTRON COOLING

The current electron cooler at the AD was recycled from the previous ICE and LEAR machines at CERN and is now close to 40 years old. In view of the AD consolidation program it has been decided to build a new electron cooler for the AD incorporating all the advances in electron cooling from the intervening period such as e.g. adiabatic expansion, variable density electron beam and electrostatic deflector plates for efficient collection of the electron beam. The preliminary design studies for the new electron cooler are being launched with an aim to install it at the AD during LS2 scheduled for 2018.

RF SYSTEMS

The C02 (2 MHz) cavity tuning and HV power supplies will be renewed with modern and more compact devices during LS1 as the present units are occupying floor space where the ELENA ring will be installed. The controls interface and interlock system will be renewed at the same time.

For the C02 beam control system, it is expected, although not formally planned yet, that the AD LLRF system will be upgraded to the Digital LLLRF (DLLRF) family [4] currently under development for all circular machines in CERN’s Meyrin site. In particular, the same DLLRF will be used for the ELENA decelerator, which will further decelerate the AD antiproton beam.

This new DLLRF family is an evolution of the system successfully operational in LEIR since 2006 [5]. The main benefits of the DLLRF approach are its remote controllability, built-in diagnostics and extensive signal observation capabilities. Its digital nature grants an excellent repeatability as well as the implementation of extensive archiving capabilities; this will allow recalling previously-validated sets of control parameters.

Regarding the 2 C10 (10 MHz) systems used for bunch rotation at injection, a solution has to be found for renewal of the final power stages where obsolete TH16 triode tubes are used. Only a few spares are available at this moment and a complete re-design of the system might be necessary to ensure continued operation.
VACUUM SYSTEM

The vacuum system of AD is the subject of many interventions. The majority of them are related to taking care of known problems on AD, such as small leaks, replacement of vacuum gauges and broken titanium-sublimation pumps’ filaments, dented bellows, installation of modified diagnostics vacuum chambers, maintenance and upgrade to cryopumps' cold heads, replacement of ion-pumps, refurbishment of the electron-cooler gun. Another part of the consolidation program has been carried out towards the installation of the future ELENA ring. One of the major issues is the necessary displacement of many vacuum control crates installed in the area where ELENA and some new experimental beam lines will be placed. This program has involved moving ion-pump power supplies, gauge controllers, profibus units, cabling and more. The AD consolidation program for this latter part is sticking to schedule, some delays have occurred in areas related to refurbishing of AD ring magnets and displacement of experimental components. We are confident that all scheduled interventions will be carried out in due time.

MAGNETS

Degradation of the coil shimming has been observed in several of the 24 AD ring bending magnets as movement of the coils in relation to the yokes has gradually increased over the last few years. To identify renovation needs, one of the bending units will be removed from the ring enclosure, opened up and rebuilt, possibly with new coils. Condition of the coils and coil shims will determine the course of action for the remaining units. For the moment, no action is planned for the 57 ring quadrupoles as these seem to be in a better condition. For the remaining magnets in the ring and transfer lines, the spare part situation is satisfactory.

POWER CONVERTERS

A general consolidation program with the aim of standardizing the magnet power converters will be launched. The aim is to reduce the number of converter types and to employ mainly CERN designed units.

INSTRUMENTATION

In order to measure tunes during the deceleration ramps, replacement of the present multiplexing system based on a network analyser is desirable. Recent investigations with AD beam under production conditions indicate that the requirements for an AD tune measurement system are compatible with a “BBQ” system, already used elsewhere in the LHC injector chain [6], and connected to the 5.7 MHz Schottky pickup. For the AD, signal levels at 10mV or lower are expected where diode detection will not be efficient. The signal can however be directly amplified to volt-level where only the BBQ-DAQ module-unit is then required to acquire the data. A similar approach has been successfully tested with modern large memory ADCs by the AD team, but this turned out to be difficult to integrate into AD controls.

An alternative solution to consolidating the current AD orbit acquisition system may be an approach which exploits the large memory of modern ADC VME modules (e.g. SIS3302). The \(\Delta\) and \(\Sigma\) signals of each pickup are directly sampled using a synchronous clock derived from the \(f_{\text{sys}}\) or by unsynchronized oversampling at \(~100\text{MS/s}\) and then normalized and post-processed by the hosting FEC software in a relatively direct approach. Such a solution would rely mainly on COTS electronics, eliminating many of the specific maintenance needs of this system, in particular the multiplexer and network analyser. This would imply parallel acquisition of all channels requiring a minimum of 15 SIS3302 ADCs for the two planes. The distribution of electronics into one or several crates still has to be studied in this case.

The ionisation profile monitors, which non-destructively measure the circulating beam profile throughout the deceleration cycle, will be upgraded to a strip read-out system similar to what has been implemented on LEIR [7]. The two monitors will be installed in vacuum sector 42 and will share a common gas injection system. The resolution of the readout will be 1mm in each plane and, considering the low ion-electron pair production rate, it is hoped to have a time resolution of around 100 ms.

In addition the local control system will be replaced by a VME based system that will be fully integrated into the AD controls. An application program running on the workstations will provide the operators an interface where they will be able to change the main parameters of the IPMs and display the time evolution of the beam profile and position at the position of the monitors.

REFERENCES