Beam Commissioning and Operation of New Linac Injector for RIKEN RI Beam Factory

RIKEN Nishina Center

Subject of RIKEN Nishina Center

• RI beam factory (RIBF)

 Producing the world’s most intense RI beams over the entire range of atomic masses by powerful heavy ion beams accelerated up to $v/c \approx 0.7$ (U beam has a first priority)

• Synthesis of super-heavy elements (SHEs)

 RILAC plays a role of

 $\begin{cases} \text{injector for RIBF experiment} \\ \text{accelerator for SHE research} \end{cases}$

 Function conflicting

 * THPP040 : M. Kase et al.
Role of new linac injector RILAC2

- Independent operation of RIBF experiments and SHE research
- Intensity upgrade of U, Xe beams

Maximum beam intensity at RIBF (pnA)

- d, α, 18O beam (RILAC-RRC-IRC-SRC)
 - 1 pμA
 - (6 × 1012 particles/s, max. 6.2 kW)
 - Attained a goal of RIBF

- 48Ca beam (RILAC-RRC-IRC-SRC)
 - 230 pnA (3.8 kW)
 - Best in the world

- 238U beam (RILAC-RRC-fRC-IRC-SRC)
 - 0.8 pnA (2009/12)
 - Insufficient

- Deficiency of beam current from an ion source
- Deterioration of RILAC (over 30 years old)
 - vacuum leak, rf instability
Key features of RILAC2

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>New SC-ECRIS</td>
<td>Increase beam intensity</td>
</tr>
<tr>
<td>Required RF stability</td>
<td>Improve transmission</td>
</tr>
<tr>
<td>$\Delta V < \pm 0.1%$</td>
<td></td>
</tr>
<tr>
<td>$\Delta \phi < \pm 0.1^\circ$</td>
<td></td>
</tr>
<tr>
<td>Higher vacuum level $\sim 10^{-6}$ Pa</td>
<td></td>
</tr>
<tr>
<td>Compact equipments</td>
<td></td>
</tr>
</tbody>
</table>

m/q ratio ~ 7

$(^{238}\text{U}^{35+}, ^{124}\text{Xe}^{19,20+})$

~ 670 keV/u to RRC

In CW mode

Diagram:
- **AVF cyclotron**
- **LEBT**
- **Pre-buncher 18.25 MHz**
- **HEBT**
- **Drift-tube linacs (DTL1~3) 36.5 MHz**
- **RFQ linac 36.5 MHz**
- **Rebuncher 1 36.5 MHz**
- **Rebuncher 2 36.5 MHz**
- **28-GHz superconducting ECR ion source**
Key features of RILAC2

New SC-ECRIS ➔ Increase beam intensity

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Conceptual design</td>
<td>Ion source</td>
<td>Ion source</td>
<td>Ion source</td>
<td>Conceptual design</td>
</tr>
<tr>
<td>Design, fabrication</td>
<td>Installation, test</td>
<td>Relocation, test</td>
<td>Beam line etc.</td>
<td>Design, fabrication</td>
</tr>
<tr>
<td>Beam line etc.</td>
<td>Design, fabrication</td>
<td>Installation, test</td>
<td>DTL</td>
<td>DTL test</td>
</tr>
<tr>
<td>DTL</td>
<td>Design, fabrication, installation</td>
<td>Installation, test</td>
<td>RFQ</td>
<td>Design, modification</td>
</tr>
<tr>
<td>RFQ</td>
<td>Installation, test</td>
<td>Rebuncher</td>
<td>Design, fabrication, installation</td>
<td>Beam commissioning</td>
</tr>
<tr>
<td>Rebuncher</td>
<td>Design, fabrication, installation</td>
<td>Operation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Recycled a 4-rod RFQ linac kindly provided by Kyoto University.

CW 4-rod RFQ linac

33.8 MHz
36.5 MHz

Original
Modified

Beam
Water pipe
Block tuner

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Original</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>33.8 MHz</td>
<td>36.5 MHz</td>
</tr>
<tr>
<td>Duty</td>
<td>100 %</td>
<td>100 %</td>
</tr>
<tr>
<td>m/q ratio</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Input energy</td>
<td>3.28 keV/u</td>
<td>100.3 keV/u</td>
</tr>
<tr>
<td>Output energy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input emittance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vane length</td>
<td>225.6 cm</td>
<td>225.6 cm</td>
</tr>
<tr>
<td>Intervane voltage</td>
<td>42.0 kV</td>
<td>42.0 kV</td>
</tr>
<tr>
<td>Mean aperture (r_0)</td>
<td>8.0 mm</td>
<td>8.0 mm</td>
</tr>
<tr>
<td>Max. modulation (m)</td>
<td>2.35</td>
<td>2.35</td>
</tr>
<tr>
<td>Focusing strength (B)</td>
<td>6.785</td>
<td>6.785</td>
</tr>
<tr>
<td>Final synchronous phase</td>
<td>-29.6°</td>
<td>-29.6°</td>
</tr>
<tr>
<td>Unloaded Q</td>
<td>5400</td>
<td>5000 (measured)</td>
</tr>
<tr>
<td>Shunt impedance</td>
<td>~50 kΩ</td>
<td>~50 kΩ</td>
</tr>
<tr>
<td>Required rf power</td>
<td>~18 kW</td>
<td>~18 kW</td>
</tr>
</tbody>
</table>

Resonant frequency $f_0: 33.8$ MHz → 36.5 MHz
$m/q \approx 7$ ions accelerated to 100 keV/u without changing vane electrodes.
Unloaded Q: 5400 → 5000 (measured)
Drift-tube linacs

- Low-\(\beta\) : 0.015～0.038
- CW-QWR, 36.5 MHz
- Directly coupled with rf amplifier for saving space and cost

Frequency \(\leftrightarrow\) Load impedance
(Resonator) \(\leftrightarrow\) Coupling (coupler, amp.)

Carefully set the target frequency

<table>
<thead>
<tr>
<th>DTL1</th>
<th>DTL2</th>
<th>DLT3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency (MHz)</td>
<td>36.5</td>
<td>36.5</td>
</tr>
<tr>
<td>Duty (%)</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>(m/q) ratio</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Input energy (keV/u)</td>
<td>100</td>
<td>220</td>
</tr>
<tr>
<td>Output energy (keV/u)</td>
<td>220</td>
<td>450</td>
</tr>
<tr>
<td>Length (cm)</td>
<td>80</td>
<td>110</td>
</tr>
<tr>
<td>Height (mm)</td>
<td>1320</td>
<td>1429</td>
</tr>
<tr>
<td>Gap number</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Gap length (mm)</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>Gap voltage (kV)</td>
<td>110</td>
<td>210</td>
</tr>
<tr>
<td>Drift tube aperture (mm)</td>
<td>17.5</td>
<td>17.5</td>
</tr>
<tr>
<td>Peak surface field (MV/m)</td>
<td>8.9</td>
<td>9.4</td>
</tr>
<tr>
<td>Synchronous phase (deg.)</td>
<td>-25</td>
<td>-25</td>
</tr>
</tbody>
</table>
RF voltage stability and phase stability

Target value \(\pm 0.1\% \)
Target value \(\pm 0.1^\circ \)

Voltage stability : < \(\pm 0.1\% \)
Phase stability : \(\sim \pm 0.1^\circ \)

Sufficient to attain the target values
History of RILAC2 beam commissioning

Successfully commissioned on schedule

<table>
<thead>
<tr>
<th>2010</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>12</td>
<td>1</td>
</tr>
</tbody>
</table>

Construction

Beam commissioning

- First beam of RILAC2 \((^{124}\text{Xe}, \text{December 21, 2010})\)
- RILAC2 stand-alone \((^{124}\text{Xe})\)
- Installation and test of a rebuncerh2
- RILAC2-RRC-fRC \((^{124}\text{Xe})\)
- RILAC2-RRC-fRC-IRC-SRC \((^{124}\text{Xe})\)
- RILAC2-RRC \((^{238}\text{U})\) Test of charge stripper
- RILAC2-RRC \((^{238}\text{U})\) Test of charge stripper

Charge stripper

H. Imao et al., THPPP084.

Supplying beams to experiments
First beam of RILAC2

Started on December 21, 2010
Succeeded in accelerating the first beam on day 1.

Beam transmission efficiency ~75%

Beam profile measured by a wire scanner.

124Xe^{20+}

Trimmed by a slit.

674 keV/u

7.1 μA

9.5 μA
Decision of operation parameters

Started with parameters of designed value.

Parameters were made fine adjustments to increase beam transmission by measuring the beam current.

RFQ voltage setting vs. beam current downstream of bending magnet.

![RFQ voltage setting graph](image1)

DTL3 rf phase setting vs. beam current downstream of bending magnet.

![DTL3 rf phase setting graph](image2)

Parameters are consistent with designed value.
Beam loss caused by electron capture reactions

Loss of the uranium beam occurred in each section between the bending magnets of HEBT due to low vacuum level.

→ about 10% in each section

Example: a section in HEBT

\[\sim 5 \times 10^{-5} \text{ Pa} \quad \text{Aug. 29, 2011} \]

\[\sim 10\% \]

\[238\text{U}^{35+} \quad 90\% \]

\[238\text{U}^{34+} \quad 8\% \]

\[238\text{U}^{33+} \quad 2\% \]

by appending a TMP

\[\sim 1 \times 10^{-5} \text{ Pa} \quad \text{Apr. 27, 2012} \]

\[<3\% \sim 10\% \quad \text{Five times improved} \]

\[238\text{U}^{35+} \quad 97\% \]

\[238\text{U}^{34+} \quad 2.3\% \]
Beam transmission efficiency

Improved by optimizing rf parameters and improving the vacuum level

Typical 4σ emittance of uranium beam from the SC-ECRIS.

- $76\pi \text{ mm}\cdot\text{mrad}$
- $93\pi \text{ mm}\cdot\text{mrad}$

$^{124}\text{Xe} : 75\% \ (2010/12) \Rightarrow 78\% \ (2011/05)$

$^{238}\text{U} : 74\% \ (2011/08) \Rightarrow 80\% \ (2012/04)$

Y. Higurashi, private communication.
Beam energy matching

Fine tuning of injection energy to RRC is required. Beam energy from RILAC2 was decided by time-of-flight measurement and adjusted so as to obtain an optimal turn pattern of RRC.

RRC turn pattern, 124Xe beam (2011/05)

Optimal energy
669 keV/u

1/(36.5 MHz)
Deployment of RILAC2 for RIBF experiment

RILAC2 successfully started supplying beams from October 2011.

- 2011/10/5 ~10/6: First experiment using RILAC2 ($^{238}\text{U} \ 10.75 \text{ MeV/u}$)
- 2011/10/9 ~12/8: First RIBF experiment ($^{238}\text{U} \ 345 \text{ MeV/u}$)
- 2011/12/8 ~12/19: RIBF experiment ($^{124}\text{Xe} \ 345 \text{ MeV/u}$)

Maximum beam intensity (pnA)

- ^{238}U beam ($\approx 25 \mu\text{A}@\text{IS}$)
 - 0.8 pnA \rightarrow 3.5 pnA
- ^{124}Xe beam ($\approx 60 \mu\text{A}@\text{IS}$)
 - 15.4 pnA

Much higher intensity are expected

Beam break time resulting from downtime of RILAC2

\Rightarrow < 0.3% of the total scheduled beam time
Summary

• New linac injector RILAC2 has been successfully commissioned in 2011.

• Independent operation of RIBF experiments and the SHEs research becomes possible.

• Intensity of very heavy ions such as U and Xe are increasing reliably.
Refs
RI beam factory (RIBF)

- To produce the world’s most intense RI beams over the entire range of atomic masses using heavy ion beam accelerated up to $v/c \approx 0.7$.
RI beam factory (RIBF)

• To produce the world’s most intense RI beams over the entire range of atomic masses using heavy ion beam accelerated up to $v/c \approx 0.7$

U, Xe acceleration mode: $E = 345$ MeV/u

RILAC: RIKEN heavy ion linac, (1981)

Y. Watanabe et al., MOPPD030.

SRC: the world’s first superconducting ring cyclotron, $K = 2600$ MeV, (2006)

BigRIPS: In-flight RI beam separator

Entire view of RIBF
RI beam factory (RIBF)

- To produce the world’s most intense RI beams over the entire range of atomic masses using heavy ion beam accelerated up to $v/c \approx 0.7$

Mode for synthesis of super-heavy elements (SHEs)

M. Kase et al., THPPP040.

RILAC: RIKEN heavy ion linac, (1981)

RIBF injector GARIS \{ shared

GARIS spectrometer for SHE research

H. Imao et al., THPPP084.

Entire view of RIBF
RI beam factory (RIBF)

- To produce the world’s most intense RI beams over the entire range of atomic masses using heavy ion beam accelerated up to $v/c \approx 0.7$

Independent operation of RIBF experiments and SHE research

RILAC2: New linac injector for RIBF

RILAC: RIKEN heavy ion linac, (1981)

GARIS spectrometer for SHE research

H. Imao et al., THPPP084.

Entire view of RIBF
Ring cyclotrons

Table

<table>
<thead>
<tr>
<th></th>
<th>RRC</th>
<th>fRC</th>
<th>IRC</th>
<th>SRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-number (MeV)</td>
<td>540</td>
<td>570</td>
<td>980</td>
<td>2600</td>
</tr>
<tr>
<td>Sector magnets</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Velocity gain</td>
<td>4.0</td>
<td>2.1</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Trim coils (/sector)</td>
<td>26</td>
<td>10</td>
<td>20</td>
<td>4(SC) 22(NC)</td>
</tr>
<tr>
<td>RF resonators</td>
<td>2</td>
<td>2+FT</td>
<td>2+FT</td>
<td>4+FT</td>
</tr>
<tr>
<td>Frequency range (MHz)</td>
<td>18-38</td>
<td>54.75</td>
<td>18-38</td>
<td>18-38</td>
</tr>
</tbody>
</table>

SC = superconducting
NC = normal conducting
FT = flat-top resonator
Acceleration mode at RIBF

Variable-energy mode:
\[\alpha, ^{18}\text{O}, ^{48}\text{Ca}, ^{86}\text{Kr} \]
up to 400 MeV/u @SRC

Fixed-energy mode:
\[^{238}\text{U}, ^{124}\text{Xe} \]
345 MeV/u @SRC

Light ion mode:
Pol-d, \(^{14}\text{N}\)
250-440 MeV/u @SRC
Present acceleration mode at RIBF

RILAC
- K-value (MeV): 540
- \(\beta_{\text{out}}/\beta_{\text{in}} = 4.0 \)
- h = 9

RRC
- 570

fRC
- 12
- 7

IRC
- 1.50

SRC
- 1.506
- 6

18GHz ECRIS FCRFQ
- 14.5GHz Superconducting ECRIS
- AVF
- Pol. deuteron source

18GHz ECRIS

GARIS
- Stripper 1
- Booster

RILAC
- 28GHz SCECRIS

RIPS

CRIB

Stripper 2

Stripper 3

BigRIPS
Influence of RF instability

0.1° phase difference on DTL3 \Rightarrow 0.08% voltage difference on DTL3

$\Delta V \ 0.1\%$ on DTL3
$\rightarrow \Delta \phi \ \sim 4° \ @ \ injection \ of \ RRC$
$\rightarrow \Delta r \ \sim 3.7 \ mm \ @ \ extraction \ of \ RRC$
(Turn separation @ extraction of RRC : 6.7 mm)

↓

Critical degradation of extraction efficiency
Modification of RFQ

Put a block tuner into every gap between the posts → Size of block was optimized by 3D EM calculation (MWS) and cold-model test

Required rf power@42kV: 17.5 kW (80%-Q)
Rf amplifier: 40 kW max.
Detailed design of block tuner

- Heat load of five block tuners: \(\sim 2.1 \text{ kW} @ 42 \text{ kV} \)

- Cooling of block (assumed as \(\varphi 11.6 \text{ mm}, 4.85 \text{ m}, 50 \text{ bend} \))
 - Cooling water 18 L/min (inlet 0.5 MPa, outlet 0.2 MPa)
 - Water temp. \(\sim 2 \text{ °C} \) up, inner surface temp. \(\sim 1 \text{ °C} \) up

- Weight saving: 64 kg → 33 kg

- 3D CAD drawing (Autodesk inventor)

Block tuner made of oxygen free copper
Test of RFQ linac

- Assembly: performed in March 2010
- Vacuum test: acceptable (< 8×10^{-6} Pa)
- Resonant frequency: corresponds to 36.5 MHz
- Low-level circuits & rf amplifier: ready
- High power test: achieved the rated voltage of 42 kV!!
Drift tube linac

- DTL1, 2: new fabrication
- DTL3: modify CSM-D1 tank
- CW-QWR
- Low-β: 0.015～0.038
- 1.1～1.2 Kilpatrick
- Direct coupling scheme for saving cost and space

Kilpatrick limit at tens MHz

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>DTL1</th>
<th>DTL2</th>
<th>DLT3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duty (%)</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>m/q ratio</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Input energy (keV/u)</td>
<td>100</td>
<td>220</td>
<td>450</td>
</tr>
<tr>
<td>Output energy (keV/u)</td>
<td>220</td>
<td>450</td>
<td>680</td>
</tr>
<tr>
<td>Length (cm)</td>
<td>80</td>
<td>110</td>
<td>130</td>
</tr>
<tr>
<td>Height (mm)</td>
<td>1320</td>
<td>1429</td>
<td>1890</td>
</tr>
<tr>
<td>Gap number</td>
<td>10</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>Gap length (mm)</td>
<td>20</td>
<td>50</td>
<td>65</td>
</tr>
<tr>
<td>Gap voltage (kV)</td>
<td>110</td>
<td>210</td>
<td>260</td>
</tr>
<tr>
<td>Drift tube aperture (mm)</td>
<td>17.5</td>
<td>17.5</td>
<td>17.5</td>
</tr>
<tr>
<td>Peak surface field (MV/m)</td>
<td>8.9</td>
<td>9.4</td>
<td>9.7</td>
</tr>
<tr>
<td>Synchronous phase (deg.)</td>
<td>-25</td>
<td>-25</td>
<td>-25</td>
</tr>
</tbody>
</table>

O. Kamigaito, PASJ6[74].
Design of DTL tanks

- Direct coupling scheme → resonant frequency decreases because of their series/parallel capacitance
- Target frequency was adopted such that this decrease was compensated
- The decrease was estimated to be -225 kHz by comparing measurement and MWS calculation

![DTL3 model for MWS](image)

DTL3: Coupler 50Ω

- Measured
 - w/ Coupler
 - w/o Coupler
- Short Trimmer: 1169 (+500)
- Trimmed: 61.1
- Calc.
 - w/o coupler
 - coupler=watch
 - coupler=short

![Frequency vs Coupler Position](image)

DLT3 Coupler model

- Rs: 1.77 MΩ
- Qo: 30000(100.0)
- Cc: 0.46 pF
- Z0/L: 50.00 Ω/1.700 m

![Parameter values](image)

Z0 = 50 Ω

![Graph: Frequency vs Impedance](image)
Test result of DTL tanks

For three tanks
- Resonant frequency: conformable to designed value 36.5 MHz
- High power test: achieved the rated voltage

Measured characteristics

<table>
<thead>
<tr>
<th></th>
<th>DTL1</th>
<th>DTL2</th>
<th>DTL3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency range (MHz)</td>
<td>35.64—36.87</td>
<td>35.5—36.8</td>
<td>36.25—36.69</td>
</tr>
<tr>
<td>Unloaded Q</td>
<td>13000</td>
<td>20350</td>
<td>22500</td>
</tr>
<tr>
<td>Shunt impedance (MΩ/gap)</td>
<td>0.94</td>
<td>1.65</td>
<td>1.72</td>
</tr>
<tr>
<td>Effective shunt impedance (MΩ/m)</td>
<td>135</td>
<td>176</td>
<td>102</td>
</tr>
<tr>
<td>Required rf power (kW)</td>
<td>6.5</td>
<td>13.4</td>
<td>19.6</td>
</tr>
</tbody>
</table>
Rebunchers

REB1
- QWR
 - $f_0 : 36.5$ MHz
 - $\beta : 0.0147, \beta \lambda/2 : 60$ mm
 - Rated voltage : 100 kV total
 - Gap number : 4
 - Gap length : 20 mm, 10 mm
 - Drift tube aperture : 17.5 mm
 - $Q_0 : 8500$ (MWS)
 - Shunt impedance : 550 kΩ (MWS)
 - Required rf power : 570 W (100%-Q)
 - Power amp. : 1 kW max.

REB2
- QWR
 - $f_0 : 36.5$ MHz
 - $\beta : 0.0382, \beta \lambda/2 : 156$ mm
 - Rated voltage : 200 kV total
 - Gap number : 4
 - Gap length : 20 mm
 - Drift tube aperture : 20 mm
 - $Q_0 : 11400$ (MWS)
 - Shunt impedance : 950 kΩ (MWS)
 - Required rf power : 1500 W (100%-Q)
 - Power amp. : 3 kW max.
Pictures: fabrication and installation
RILAC2 beam commissioning

<table>
<thead>
<tr>
<th>Date</th>
<th>Machine studies, events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec. 17, 2010</td>
<td>Construction of RILAC2 was finished.</td>
</tr>
<tr>
<td>Dec. 21, 2010</td>
<td>Beam commissioning was begun using $^{124}\text{Xe}^{20+}$. First beam.</td>
</tr>
<tr>
<td>Dec. 22, 2010</td>
<td>RILAC2 solo acceleration test using $^{124}\text{Xe}^{20+}$.</td>
</tr>
<tr>
<td>Jan. 21, 2011</td>
<td>RILAC2 solo acceleration test using $^{124}\text{Xe}^{20+}$.</td>
</tr>
<tr>
<td>May. 7 — 21, 2011</td>
<td>RILAC2-RRC-fRC-IRC-SRC, ^{124}Xe beam was extracted from SRC.</td>
</tr>
<tr>
<td>Aug. 26 — 29, 2011</td>
<td>RILAC2-RRC acceleration test using ^{238}U.</td>
</tr>
<tr>
<td>Sep. 24 — 26, 2011</td>
<td>RILAC2-RRC acceleration test using ^{238}U. Test of charge stripper.</td>
</tr>
<tr>
<td>Oct. 5, 2011 —</td>
<td>Supplying beams for experiments.</td>
</tr>
</tbody>
</table>