CLIC Conceptual Design and CTF3 Results

D. Schulte for the CLIC team
IPAC 2011
CLIC Main Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value 1</th>
<th>Value 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>centre of mass energy</td>
<td>E_{cm} [GeV]</td>
<td>500</td>
<td>3000</td>
</tr>
<tr>
<td>luminosity</td>
<td>\mathcal{L} [10^{34} cm^{-2}s^{-1}]</td>
<td>2.3</td>
<td>5.9</td>
</tr>
<tr>
<td>luminosity in peak</td>
<td>$\mathcal{L}_{0.01}$ [10^{34} cm^{-2}s^{-1}]</td>
<td>1.4</td>
<td>2</td>
</tr>
<tr>
<td>gradient</td>
<td>G [MV/m]</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td>site length</td>
<td>[km]</td>
<td>13</td>
<td>48.3</td>
</tr>
<tr>
<td>charge per bunch</td>
<td>N [10^9]</td>
<td>6.8</td>
<td>3.72</td>
</tr>
<tr>
<td>bunch length</td>
<td>σ_z [μm]</td>
<td>70</td>
<td>44</td>
</tr>
<tr>
<td>IP beam size</td>
<td>σ_x/σ_y [nm]</td>
<td>200/2.26</td>
<td>40/1</td>
</tr>
<tr>
<td>norm. emittance</td>
<td>ϵ_x/ϵ_y [nm]</td>
<td>2400/25</td>
<td>660/20</td>
</tr>
<tr>
<td>bunches per pulse</td>
<td>n_b</td>
<td>354</td>
<td>312</td>
</tr>
<tr>
<td>distance between bunches</td>
<td>Δ_b [ns]</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>repetition rate</td>
<td>f_r [Hz]</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>est. power cons.</td>
<td>P_{wall} [MW]</td>
<td>240</td>
<td>560</td>
</tr>
</tbody>
</table>
Key Design Issues

<table>
<thead>
<tr>
<th>Main linac gradient</th>
<th>Accelerating structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive beam scheme</td>
<td>Drive beam generation</td>
</tr>
<tr>
<td></td>
<td>PETS</td>
</tr>
<tr>
<td></td>
<td>Two beam module</td>
</tr>
<tr>
<td></td>
<td>Drive beam deceleration</td>
</tr>
<tr>
<td>Luminosity</td>
<td>Main beam emittance generation and preservation, focusing</td>
</tr>
<tr>
<td></td>
<td>Alignment and stabilisation</td>
</tr>
<tr>
<td>Operation and Machine Protection System (robustness)</td>
<td></td>
</tr>
<tr>
<td>Detector (experimental conditions)</td>
<td></td>
</tr>
</tbody>
</table>

Design and feasibility issues will be covered in CLIC Conceptual Design Report. In time for European strategy group.

Volume 1: Accelerator
Volume 2: Physics and experiments
Volume 3: Executive summary
Main Linac

- Maximise current to maximise efficiency/luminosity
- Strong focusing O(10%) quadrupoles
- Sensitive to imperfections
- 80% fill factor
Accelerating Structure

- Require breakdown probability 1% per pulse
 - \(p \leq 3 \times 10^{-7} \text{m}^{-1} \text{pulse}^{-1} \)

- Design based on empirical constraints
 - \(E_{\text{surf}} < 260 \text{MV/m} \)
 - \(\Delta T < 56 \text{K} \)
 - \(P/(2\pi a)\tau^{1/3} < 18 \text{MW/mm ns}^{1/3} \)

D. Schulte

W. Wuensch et al.
Achieved Gradient

Measurements scaled according to

\[p \propto G^{30} \tau^{5} \]

Some input power as 100MV/m loaded

Tests at KEK and SLAC

<table>
<thead>
<tr>
<th>Simple early design to get started</th>
<th>More efficient fully optimised structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>No damping waveguides</td>
<td>T18</td>
</tr>
<tr>
<td>Damping waveguides</td>
<td>TD18</td>
</tr>
<tr>
<td></td>
<td>T24</td>
</tr>
<tr>
<td></td>
<td>TD24 = CLIC goal</td>
</tr>
</tbody>
</table>

CLIC RF team
N. Shipman

TD24: September 15th @ KEK
mid-November @ SLAC
Soon @ CERN
CLIC Power Source Concept

Drive Beam Accelerator
efficient acceleration in fully loaded linac

Drive Beam Decelerator Section (2 × 24 in total)

Combiner Ring × 4
pulse compression & frequency multiplication

Combiner Ring × 3
pulse compression & frequency multiplication

Delay Loop × 2
gap creation, pulse compression & frequency multiplication

RF Transverse Deflectors

CLIC RF POWER SOURCE LAYOUT

Drive beam time structure - initial
240 ns
140 μs train length - 24 × 24 sub-pulses
4.2 A - 2.4 GeV - 60 cm between bunches

Drive beam time structure - final
240 ns
5.8 μs
24 pulses - 101 A - 2.5 cm between bunches

D. Schulte
CLIC Test Facility (CTF3)

<table>
<thead>
<tr>
<th>parameter</th>
<th>unit</th>
<th>CLIC</th>
<th>CTF3</th>
</tr>
</thead>
<tbody>
<tr>
<td>accelerated current</td>
<td>A</td>
<td>4.2</td>
<td>3.5</td>
</tr>
<tr>
<td>combined current</td>
<td>A</td>
<td>101</td>
<td>28</td>
</tr>
<tr>
<td>final energy</td>
<td>MeV</td>
<td>2400</td>
<td>≈120</td>
</tr>
<tr>
<td>accelerated pulse length</td>
<td>μs</td>
<td>140</td>
<td>1.2</td>
</tr>
<tr>
<td>final pulse length</td>
<td>ns</td>
<td>240</td>
<td>140</td>
</tr>
<tr>
<td>acceleration frequency</td>
<td>GHz</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>final bunch frequency</td>
<td>GHz</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

- **Recycled infrastructure**
 - made it affordable
 - causes lots of headache

- **150 MeV e-linac**
- **Thermionic source**
- **Photo injector**
- **Experimental area**
- **Delay Loop**
- **Combiner ring**
- **15GHz deflector**
- **3GHz acceleration**
- **1.5GHz sub-harmonic buncher**
Drive Beam Linac

95.3% RF to beam efficiency
No instabilities
Phase switch works OK

<table>
<thead>
<tr>
<th>Parameter</th>
<th>CLIC goal</th>
<th>CTF3 routine at end of linac</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transverse emittance</td>
<td>100μm</td>
<td>50-60μm</td>
</tr>
<tr>
<td>Pulse current</td>
<td>7.5e-4</td>
<td>5.4e-4</td>
</tr>
</tbody>
</table>

G. Sterbini, T. Persson
Cannot measure beam phase jitter accurately enough
- monitor being developed (Frascati)
- measure RF instead

<table>
<thead>
<tr>
<th></th>
<th>Tolerance</th>
<th>Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Power</td>
<td>0.2%</td>
<td>0.21%</td>
</tr>
<tr>
<td>RF Phase</td>
<td>0.05°</td>
<td>0.07°</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.035°)</td>
</tr>
</tbody>
</table>

Good CTF3 klystron
- pulse-to-pulse
- 10ns time slices
- with respect to local phase reference
Drive Beam Combination

29 A reached, routinely 25A

Significant increase of transverse emittance
Current jitter increases to O(1%)

Focus has been on current
• will now further improve beam quality

CTF3 specific issues need to be addressed and limits identified
• RF pulse compression
• Beam energy in combiner ring is 5% of that in CLIC
• Geometric emittance 20 times larger
• ...
• ...

CTF3 team

End of linac

Delay loop

After delay loop

In combiner ring
TBTS (two-beam test stand)
- power transfer to main beam
- module design

TBL (test beam line)
- drive beam stability during deceleration
PETS Breakdown Rate at SLAC (ASTA)

D. Schulte

No breakdown last $O(8 \times 10^6)$ pulses -> P about consistent with $p = 2.4 \times 10^{-7}/m/pulse$

A. Cappelletti et al.

Power
Energy/pulse

Test with on-off
In September

[Graphs and images showing power and energy trends over time]
TBTS: Two Beam Acceleration

CTF3 team

Maximum gradient 145 MV/m

Consistency between
- produced power
- drive beam current
- test beam acceleration
Installation and validation of first two prototype modules under way

Structure design modified slightly TD26

Stack of 8 ac. structures under assembly

G. Riddone et al.
Decelerator Design

Avoid losses
• 100A, 2.4-0.24GeV beam
• aperture ≈ 10σ
• large energy spread
• significant wakefields

Design and simulations are OK

≈ 1km
1000 quadrupoles
TBL: Drive Beam Deceleration

Goal is 50% deceleration

16 PETS maximum
4 PETS installed
4 to come in September
More next year

Up to 19A current
• optics understood
• no losses in TBL

Good agreement
• power production
• beam current
• beam deceleration

D. Schulte

S. Doebert et al.
Main Beam Emittances

<table>
<thead>
<tr>
<th></th>
<th>ϵ_x [nm]</th>
<th>ϵ_y [nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Damping ring exit</td>
<td>500</td>
<td>5</td>
</tr>
<tr>
<td>RTML exit</td>
<td>600</td>
<td>10</td>
</tr>
<tr>
<td>main linac exit</td>
<td>660</td>
<td>20</td>
</tr>
</tbody>
</table>

$$\mathcal{L} = H_D \frac{N^2}{4\pi\sigma_x\sigma_y} n_b f_r$$

$$\mathcal{L} \propto H_D \frac{N}{\sigma_x} N n_b f_r \frac{1}{\sigma_y}$$

Beam power

Luminosity spectrum

Beam Quality (+bunch length)
Emittance Generation

Damping ring design is consistent with target performance

Many design issues addressed
- lattice design
- dynamic aperture
- tolerances
- intra-beam scattering
- space charge
- wigglers
- RF system
- vacuum
- electron cloud
- kickers

CLIC @3 TeV would achieve 40% of luminosity with ATF performance
(3800nm/15nm@4e9)

Y. Papaphilippou et al.

ICFA Beam Dynamics Mini Workshop on Low Emittance Rings 2011
3-5 October 2011
Main Linac Alignment Concept

Pre-alignment $O(10\mu m)$
• with wire system
• detailed model in simulations
• BPM shown as example

Dispersion free steering
• aligns BPMs and quadrupoles

Move girders onto the beam
• use wakemonitors
• removes wakefield effects

BPM alignment errors

<table>
<thead>
<tr>
<th>Reference</th>
<th>10µm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor</td>
<td>5µm</td>
</tr>
<tr>
<td>Sensor-cradle</td>
<td>5µm</td>
</tr>
<tr>
<td>Cradle-BPM</td>
<td>5µm</td>
</tr>
<tr>
<td>BPM internal</td>
<td>5µm</td>
</tr>
<tr>
<td>TOTAL</td>
<td>14µm</td>
</tr>
</tbody>
</table>
• RMS error of 11μm found
 • accuracy is approx. 13.5μm
 • Target is 10μm

• More work remains to be done
 • Found two bad points due to mechanical problem
 • Stake-out error needs to be determined
Main design issues
- chromaticity
- non-linear effects
- synchrotron radiation
- tuning
- stability

Including 10μm RMS misalignments

Static imperfections:
- Goal is $L \geq 110\% L_0$
- with probability of 90%

Convergence is slow
- faster method is being developed

Need more complete imperfection modelling
- independent sides
- field errors
- dynamic imperfections during tuning
- realistic signals

Full tuning performance

R. Tomas,
B. Dalena et al.

Tests programme at ATF2 at KEK
Natural ground motion can impact the luminosity
• typical quadrupole jitter tolerance $O(1\text{nm})$ in main linac and $O(0.1\text{nm})$ in final doublet

-> develop stabilisation for beam guiding magnets
Active Stabilisation Results

<table>
<thead>
<tr>
<th>Luminosity achieved/lost [%]</th>
<th>A</th>
<th>B10</th>
</tr>
</thead>
<tbody>
<tr>
<td>No stab.</td>
<td>119%/2%</td>
<td>53%/68%</td>
</tr>
<tr>
<td>Current stab.</td>
<td>116%/5%</td>
<td>108%/13%</td>
</tr>
<tr>
<td>Future stab.</td>
<td></td>
<td>118%/3%</td>
</tr>
</tbody>
</table>

J. Snuverink, J. Pfingstner
Machine Protection/Operation

Machine protection concept
• inherently robust against fast failures
• detect slow failures

Most important example BDS collimation
• energy collimators supposed to take a pulse
• betatron collimators not

Concept for start-up developed
• based on CTF3/LHC experience

Concept developed to operate 3TeV-CLIC at lower energy for physics studies
• based on reduced beam current/longer pulses
• can cover factor 3 in energy
Outlook

Develop staged approach to project
• taking into account LHC and other findings
• e.g. start for Higgs and top then go up in energy

CLICO, a facility with real prototypes
• prototypes of hardware components at real frequency
• final validation of drive beam quality/main beam emittance preservation
• facility for reception tests

More technical design
• many workpackages defined

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Conceptual design & preliminary cost estimation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering, industrialisation & cost optimisation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>?</td>
</tr>
<tr>
<td>Project Preparation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>?</td>
</tr>
<tr>
<td>Project Implementation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>?</td>
</tr>
</tbody>
</table>
Conclusion

Conceptual Design Report is converging

Key issues have been addressed
• very good progress
• more work remains on some

A road to the future is visible
• please join and help
• ILC-CLIC workshop in Granada, September 26-30
• CLIC workpackage meeting at CERN, November 3-4
Thanks

Thanks to the CLIC collaboration in general

Thanks in particular to:

N. Shipman, I Syratchev, A. Grudiev, W. Wuensch, G. Riddone

M. Csatari

T. Persson, G. Sterbini, P. Skowronski, F. Tecker, R. Corsini, S. Doebert, A. Dubrovski, W. Farabolini, R. Ruber

H. Meinaud Durand, K. Artoos, J. Snuverink, J. Pfingstner,

R. Tomas, Y. Papaphilippou, A. Latina, B. Dalena, B. Jeanneret

J.-P. Delahaye, S. Stapnes