Modeling and Operation of an Edge-Outcoupled Free-Electron Laser

Michelle Shinn*, Stephen Benson, George Neil, and Anne Watson
TJNAF, Newport News, VA 23606
Peter van der Slot
LPNO, Mesa Institute for Nanotechnology, University of Twente,
P.O. Box 217, 7500 AE Enschede, the Netherlands
Ramin Lalezari
Advanced Thin Films, Boulder, CO 80301

32nd International FEL Conference
Aug. 23-27, 2010
Malmö City, Sweden

Work supported by the U.S. Dept. of Energy under contract DE-AC05-06OR23177
Outline

• The challenge to achieving wide tunability with high outcoupling efficiency
 • Discussion of previous techniques
• Introduction to Edge-outcoupling
 • Design
• Experimental results
 • Gain & Loss
 • CW power
• Model results (3D Genesis 1.3/OPC)
• Discussion
• Conclusions
Outcoupling techniques

• The goal is to realize a feature of FELs, the ability to quickly tune the wavelength over a wide range.

• Ways to do this:

 • Hole outcoupling
 • The most common FEL outcoupling technique. Very poor efficiency (only ~ 5% of that anticipated geometrically).
 • At Jlab we discovered some issues with heating about the hole causing mode-hopping when running cw.

 • Brewster window
 • Employed at Stanford on the Mark III. Abandoned due to
 • Need to adjust angle as a function of wavelength
 • Laser-induced damage.

 • Scraper outcoupling
 • A mirror with a hole in the middle, placed near one of the end mirrors of the cavity. Good (~ 90%) outcoupling efficiency.
 • Diffraction from the double pass through the hole must be managed.
Edge-outcoupling: a fresh look at an old idea

- Edge-outcoupling is a variant of the usual near-concentric resonator.
- Both mirrors have broadband (usually metal) HR coatings.
- Outcoupling takes place by making the downstream mirror smaller in diameter than the optical mode, so the outer portion of the mode passes around the edge of the mirror.
- Can be deployed on existing FELs.
- Two new FELs where it can be used are shown below:

BigLight at Florida State Univ.
3 FELs spanning 2.5-1500 microns

JLAMP at Jlab
12-124 nm
Modeling

- To determine the downstream mirror diameter, one must keep the outcoupling (the majority of the loss) roughly 1/3 the small signal gain over the wavelength region of interest.
- The geometric loss = 1 – mirror area/mode area can be determined using the formulae published by Kogelnick and Li (1966)
- The gain can be estimated using formulae (e.g., Dattoli or M. Xie) or computer simulations (e.g. PERSEO, Genesis 1.3 or Medusa)
- The design of the outcoupler was done using analytical formulae for both gain and loss to provide continuous operation from 1-3 μm.
- After data was collected, more sophisticated modeling was done using Genesis 1.3 in 3D mode (currently only works in 3D mode with OPC version 0.7.4)
Edge-outcoupling implementation on the JLab IR FEL

- Mirror was constructed on a 7.62 cm dia. planoconcave (16.0 m ROC) sapphire substrate.
- The concave side has a 1.93 cm enhanced aluminum HR coating, apodized to mitigate intensity spikes in the far field output as well as the near field.
- The concave side of the substrate not covered by the HR coating was coated with an AR coating (1-3 μm).
- The plano side was AR coated as well.
Gain and loss data

- Gain and loss data were taken over two shifts
- Data shown below is for 4.68 MHz, 2 Hz, 250 μs macropulses at 2 μm.
- The linear trend for both gain and loss were anticipated; the former from filling factor, the latter from the properties of Gaussian mode propagation.
Modeling results

- E-beam parameters (energy, emittance, etc) were determined using our beam-based diagnostics.
- The radii of curvatures of the mirrors were determined both in and \textit{ex-situ}.
CW Performance

- We optimized the outcoupling at each wavelength to obtain this data
 - This was done by changing the HR mirror ROC, and hence the Rayleigh range of the resonator. There was no evidence of mode hopping at any wavelength.
- Wavelength limits:
 - Short λ end – gain/loss ratio & Rayleigh range (mode too small at outcoupler)
 - Long λ end – gain/loss ratio at 3rd harmonic more favorable, 3rd harmonic lased preferentially.
Discussion

• The linear trends for the gain and loss are reasonably well-reproduced.
• The calculated net gain is about 25% higher than measured, but since the calculation ignores the details of the pulseshape or slippage, this is not too surprising.
• The measured loss is within 10% of the calculated loss, except at the longest Rayleigh range.
• Of great importance is to estimate the outcoupling efficiency, as we want a system that performs better than a hole outcoupler.
 • The fact that the predicted loss and measured loss are in good agreement indicate the outcoupling efficiency is high.
• One can also determine the best fit x-intercept to the loss data to derive an estimate.
 • If the outcoupling efficiency is high then zero outcoupling implies a mirror diameter that is ~ 3 or more times the mode radius.
 • The x-intercept implies a mirror diameter/mode radius ratio of 2.9 – again suggesting a high outcoupling efficiency.
• The predicted power followed the trend in wavelength, but was higher than measured, by about a factor of two.
 • We need to do 4D simulations and look again at beam parameters.
Conclusions

• We have designed and used for the first time edge outcoupling.
 • For convenience, we used a transmissive substrate to mount the mirror
 • In general, one would use a suspension mount.
• For systems with modest single pass gain (of order 40%), the outcoupling efficiency is high, of order 90%, similar to that for the annular scraper.
 • Wavefront encounters the edge one time, not twice, so diffractive losses are lower.
• We produced high average power over a wide wavelength range:
 • Over 100W from 1.5-4.3μm, with no mode hopping.
 • We have already been using this technique for user experiments
• The use of a gain code, like Genesis or Medusa, with OPC has better predictive power than can be obtained with a purely analytical approach.
• Continuing simulations with Medusa/OPC in both 3D & 4D, as we wish to do a comparison, and better predict the power.
 • Genesis/OPC will be available in a 4D version soon.
The Jefferson Lab FEL Team

This work supported by DOE under contract DE-AC05-060R23177.

April 24, 2009