Abstract

A prototype system using an ASIC equipped with 8 Charge-to-Frequency Converters (CFC) was developed in collaboration between the Beam Diagnostics and Experiment Electronics Department at GSI. The maximum sensitivity is 250 fC per output pulse. It will serve as an economic alternative developed in collaboration between the Beam Diagnostics and Experiment Electronics Department and the Beam Diagnostics and Experiment Electronics Department at GSI. The maximum sensitivity is 250 fC per output pulse. The goal of this contribution is to report on a detailed performance test under real beam conditions at the GSI beam lines. A 32-channel electronics is connected to different beam profile SEM-grids at a LINAC beam line and tested with various beam conditions. Transversal beam profiles with a time resolution down to the microsecond range have been recorded successfully. Beam profiles recorded with the new CFC-board and the old standard trans-impedance amplifiers agreed well. Further measurements were done with a Multi-Wire Proportional Chamber. Therefore the prototype was extended to 64-input channels recently.

Present Beam Profile Electronics

- **Assembled with outdated electronics components (>20 years)**
 - Discontinuation of components expected (crucial OPA 111 has been 2 years ago)
 - Also not clear with purchasing of electro-mechanical components (price trends ?)
- **High purchase costs**
 - At present: ~30 k€ for one profile-grid analog instrument with 64 wires/inputs
 - Per input channel contains 3 items of OPA111, 25 € each
 - 75 € per channel
- **Prolonged delivery times**

Hard- and Software

Main objective

- Tests of CFC-ASICs under real beam condition
 - Fast setup for tests possible ?
 - Use of existing parts possible ?
- Different FPGA-I/O VME boards, modules and software tools for beam profile measurement exist at GSI and were developed by Experiment Electronics department. This saved development time.

Components of prototype

- **Hardware**
 - RIO 2 (CPU and network connection)
 - VUPROM (FPGA, CFC-control unit)
 - TRIVA (Trigger module for MBS)
 - LEVCON (Signal level converter box)
 - VME-crate
 - Motherboard (CFC, external power supply)
 - PC
- **Software**
 - Go4* (Program for online analysis)
 - MBS (DAQ - Multi Branch System)
 - Program (on RIO 2; setting CFC registers)
 - Terminal prg. (send CFC parameters)

Description of function

- The CFC-motherboard is controlled by the VUPROM
- RIO 2 send the CFC-parameters to VUPROM-board and transfer the measured data to a PC.
- Beam profiles are displayed via software Go4*
- CFC parameters are set via a terminal program
- TRIVA and LEVCON modules are necessary for the MBS trigger operation

Technical parameter

- 2D and 3D plot possible with Go4*
 - Ranges 10/100/1000/10000 µA
 - Up to 100 time slices possible
 - Time slice selectable between 100ns and 86s in 20ns steps
 - 120 dB dynamic range at 10 or 100µA range level
 - Resolution 450C (± 3 µA)
 - Control unit can operate with one or two CFC motherboards (32- or 64-input channels)

Results of Beam Profile Measurements

- Successful beam profile measurements at SEM-grid and MWPC
- Comparison between old and new electronics has shown a very good agreement (2D-plots)
- Good observation of time-dependent changes of beam pulses (3D-plots)
 - Very helpful for accelerator operations. Not supported by the existing old electronic.

Outlook

After further promising beam tests with the new CFC readout electronics it is planned to develop a second prototype motherboard with 64-input channels. This new board will also host the counting FPGA and network communication electronics. At this step the VME-crate setup is no more necessary. The new compact development will be a cheap solution for future beam lines at GSI and FAIR. There are further plans to use this readout electronics in other setups, e.g. Faraday-cups, ionisation chambers and other beam diagnostic devices.

Charge to Frequency Converter (CFC)

- ASIC provides 2 ranges (0.25/2.5 pC/pulse)
- Large dynamic range (100) 300 fA ...130 (180) µA
- Power supply 5V and 3.3V (ASIC)
- 4 analog inputs/ASIC (test module has 4 LEMO coaxial input jacks)
- 4 on-chip counters, 16bit
- Output frequency typical 40 MHz (10 or 100 µA)
- OIFW has serial and parallel interface (test boards only serial port in operation)
- Test modules with additional drivers (LVDS and ECL compatible) available
- Offset correction via parallel interface possible
- Price: <50 €/ASIC

Working Principle of CFC

Block diagram of CFC-core

- 2 CFC-cores per channel
- Input current is integrated in active core #1
- Comparator increments DAC reference and compares with input current
- If comparator trip the counter is increased by one step (or LSB value)
- On overflow the integrator of core #1 is reset when core #2 gets activated
- The measured charge per step is defined by
 \[
 \frac{\text{output charge}}{\text{step}} = \frac{U_{\text{LSB}}}{C_{\text{f}}} \]

Results of Beam Profile Measurements

- Successful beam profile measurements at SEM-grid and MWPC
- Comparison between old and new electronics has shown a very good agreement (2D-plots)
- Good observation of time-dependent changes of beam pulses (3D-plots)
 - Very helpful for accelerator operations. Not supported by the existing old electronic.

Outlook

After further promising beam tests with the new CFC readout electronics it is planned to develop a second prototype motherboard with 64-input channels. This new board will also host the counting FPGA and network communication electronics. At this step the VME-crate setup is no more necessary. The new compact development will be a cheap solution for future beam lines at GSI and FAIR. There are further plans to use this readout electronics in other setups, e.g. Faraday-cups, ionisation chambers and other beam diagnostic devices.