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Abstract

We propose a simple method to produce quasimono-
chromatic X rays by means of photoabsorption-edge
transition radiation tuned by tilting a thin-foil stack.  We
have calculated energy spectra of transition radiation for
two cases of radiators at an electron beam energy of 1
GeV. One is composed of an eight-foil stack of 7.5-µm
thick Kapton and a titanium filter, and the other is a
combined-function type radiator of a 3-µm thick tita-
nium eight-foil stack. The following results were ob-
tained: In the case of the separated-function type radia-
tor, 1) the peak energy of the spectra can be easily tuned
to the 4.96 keV titanium K-edge by tilting the Kapton-
foil stack, and 2) the width of the resultant energy spec-
tra is reduced to a half or less compared to that with no
titanium filter, keeping the peak intensity. For the com-
bined-function type titanium radiator, also, the easy tu-
nability and the width of the spectra as narrow as that for
the separated-function radiator were obtained. Finally,
we confirmed the calculated results by comparing with
the experimental data.

1  INTRODUCTION

So far, extensive studies on the transition radiation1 as an
X-ray source have been carried out by a lot of authors. In
our previous experimental work [1, 2], we have con-
firmed that the energy spectra of transition radiation de-
pend on material and thickness of a thin-foil stack ra-
diator under the condition of γ >>1, where γ is the Lor-
entz factor of an electron beam. And it is shown that the
brilliance of the transition radiation obtained in our ex-
periment is comparable to that of synchrotron radiation
emitted from a bending magnet in GeV-electron facili-
ties, and then the transition radiation can be an alterna-
tive brilliant X-ray source.  Garibyan have made theo-
retical consideration for the transition radiation emitted
by an extreme relativistic particle moving into a medium
at an oblique incidence. The results show that the inten-
sity of the radiation hardly depends on the angle of inci-
dence except for an incidence close to parallel [3].  Fin-
man et al. proposed an X-ray source using the resonant
transition radiation tuned by tilting a stack of foils to
make a foil thickness variable, and verified the method
                                                       
1 In this paper, we do not clearly distinguish between transition radiation
and resonant transition radiation owing to lack of necessity.

experimentally [4]. Piestrup and his collaborators have
done a lot of work on producing quasimonochromatic X
rays using the photoabsorption-edge transition radiation
[5-9]. The photoabsorption-edge transition radiation rep-
resents transition radiation that its spectrum width is re-
duced by absorption of photons at the absorption edge of
foil-stack material. Therefore, it is necessary to carefully
select the foil-stack parameters such as foil thickness,
material and spacing in order to match the peak energy
of the spectra to the photoabsorption-edge energy.
       Then, we propose that it can be easier to produce
quasimonochromatic resonant transition radiation by
means of photoabsorption-edge transition radiation tuned
by tilting a thin-foil stack, because it makes easy to tune
the peak energy.  In this paper, we report the calculated
and experimental results performed for two cases of ra-
diator. One is composed of an eight-foil stack of 7.5-µm
thick Kapton and a titanium filter, and is called a sepa-
rated-function type radiator. The other is called a com-
bined-function type radiator of a 3-µm thick titanium
eight-foil stack.  Here, we report the performance of this
new simple method.

2  THEORY

2.1  Resonant Transition Radiation

Transition radiation is an electromagnetic wave emitted
when a charged particle crosses a boundary of different
dielectric media. When an electron passes many periodi-
cal boundaries, that is, a thin-foil stack radiator in a vac-
uum, the transition radiation X rays emitted from the
respective boundaries interfere with the others, and the
interfered transition radiation is called resonant transi-
tion radiation. In the case that a relative velocity of an
electron is β  and the foil stack consists of N  foils of

thickness 1l  with  spacing 2l , the differential intensity of
emitted resonant transition radiation is given by [10]
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where P  is the number of photons, θ  is an emission
angle, ω  is an angular frequency of photon, Ω  is the
solid angle, and α =1/137 is the fine structure constant.

iZ ( 2,1=i ) are the formation length of the media ex-
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where c  is the velocity of light, iω ( 2,1=i ) are the

plasma frequencies of the respective media. The reso-
nance factors1foilF  and NfoilsF  are expressed respectively
by
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where 2211 ll µµσ += , 2211 ZlZlX += , and 2,1µ  are

the X-ray absorption coefficients of the media.

2.2  Tunable Transition Radiation

Under the condition of 1≈β , the shape of the energy

spectra is determined mainly by the factor 1foilF . Ne-
glecting absorption in the foils, Eq. (3) takes a simple
form expressed by
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Eq. (5) gives a maximum value when the following con-
dition is satisfied:
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where n  is a positive integer. Substituting Eq. (2) into
Eq.  (6), one obtains:

( )π
ωω

12
1

2
1

2
1

−
=

nc

l
 .                        (7)

Eq. (7) gives an angular frequency corresponding to the
peak energy of the spectra. When a thin-foil stack tilted
with respect to the electron beam by tθ , the foil thick-
ness 1l  is replaced by the effective thickness effl to the
beam view:
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Then Eq. (7) must be modified:
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Eq. (9) represents that the peak energy of the spectra,
that is, the rough shape of spectra, can be varied only by
changing the tilting angle tθ . This means that the reso-
nant transition radiation can be tuned by tilting a foil-
stack radiator.

2.3  Calculation

The calculation was carried out based on Eq. (1), where
the X-ray absorption coefficients were included in the
factors 1foilF  and NfoilsF . Then the calculation involves the
photoabsorption-edge transition radiation in the case of
combined-function type radiator. For the case of sepa-

rated-function type radiator, the extra code of absorption
in titanium filter was added to the basic code.

3  EXPERIMENT

The experimental apparatus using the electron synchro-
tron at the KEK Tanashi branch was almost the same as
that in the ref. [2]. The 1-GeV electron beam extracted
from the electron synchrotron passed through the thin-
foil stack radiator and was deflected by a sweeping mag-
net into a ionization chamber. The average beam current
was monitored by the ionization chamber, and was kept
between 1.3 pA and 1.8 pA during the measurement. The
resonant transition radiation X rays generated from the
foil stack were detected by an X-ray crystal spectrometer
equipped with a LiF(200) and a Ge(111) crystal and
having an energy resolution of about 3.3% at 8.1 keV of
the Cu-K X ray. The background originating from Brem-
sstrahlung was evaluated by inserting an aluminum
shutter absorbing X rays. The foil stack was mounted on
a target folder in a target chamber with a given angle.
The target folder was a goniometer itself and was used to
set the tilting angle minutely.  The titanium filters of 8-

Fig. 1: The calculated and measured transition radiation
spectra from the 1-GeV electron beam incident on the
eight-foil stack of 7.5-µm thick Kapton tilted at θ=0°,
38.6°, 48°; (a) without the titanium filter (the calculated
results only), (b) with the 8-µm titanium filter, (c) with
the 28-µm titanium filter.



and 28-µm thickness as a part of separated-function type
radiator were alternatively placed between the radiator
and the crystal spectrometer.

4  RESULTS AND DISCUSSION

The calculated transition radiation spectra from the 1-
GeV electron beam incident on the eight-foil stack of
7.5-µm thick Kapton tilted at θ=0°, 38.6°, 48° without
the titanium filter are shown in Fig. 1(a). The calculated
and measured results with the 8-µm and 28-µm titanium
filters are shown respectively in Figs. 1(b) and 1(c). The
calculated and measured transition radiation spectra
from the 1-GeV electron beam incident on the 3-µm
thick titanium eight-foil stack tilted at θ=0°, 31°, 45° are
shown in Fig. 2. The lines and the marks respectively
denote the calculated and the experimental results in
Figs. 1 and 2. Fig. 1(a) shows that the peak energy
shifted with tilting angle and were at tilting angles of
θ=0°, 38.6°, 48° respectively, where all these peaks cor-
responded to the same integer n =1 in the Eq. (9). The
tilting angles of θ=38.6° and θ=31° were optimized an-
gles selected to give a maximum value of intensity at
4.95 keV respectively for the eight-foil stack of 7.5-µm
thick Kapton and the 3-µm thick titanium eight-foil
stack. Similarly the θ=48° and θ=45° were designed to
give a band width half of that at θ=0°. As expected, the
measured results in the Figs. 1(b)-(c), and 2 show quali-
tatively such features. It confirms that the new method of
photoabsorption-edge transition radiation tuned by tilting
a thin-foil stack has realized the reliable optimization for
the photoabsorption-edge transition radiation to produce
quasimonochromatic X Rays.
        Figs. 1(b) and 2 showed similar profiles. This is
why that the 8-µm titanium filter was selected in order
that the eight-foil stack of 7.5-µm thick Kapton gives the
same intensity near titaniam K-edge=4.96 keV as that of
the 3-µm thick titanium eight-foil stack. So, the two type
of radiators display almost the same performance if the
adequate design of radiator is satisfied. One can get
more narrower band width using a thicker filter as shown
in Fig. 1(c), sacrificing the intensity. Furthermore, the

separated-function type radiator can be used as a quasi-
monochromatic X Rays radiator for any photoabsorp-
tion-edge energies in the radiator spectra range. On the
other hand, the benefit of the combined-function type
radiator is that the photons in unnecessary energy region
above an absorption edge are suppressed.
        We have tested the method of photoabsorption-edge
transition radiation tuned by tilting the thin-foil stacks
for the two type of radiators: the separated-function type
radiator composed of the eight-foil stack of 7.5-µm thick
Kapton and the titanium filter, and the combined-
function type radiator of the 3-µm thick titanium eight-
foil stack. It is found that this method can make it easy
to tune the spectra to the appreciable condition. There-
fore, this method can be a useful technique to produce
quasimonochromatic X Rays.
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Fig. 2: Same as Fig. 1 for the 3-µm thick titanium eight-
foil stack tilted at θ=0°, 31°, 45°.
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