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Abstract

Nonlinear transport of intense charged particle
beams is analyzed with Lie algebraic methods. The
particle distribution in six-dimensional phase spaces is
of K-V type. The analysis is performed for magnetic
quadrupoles, and it is similar for dipoles, sextupoles and
other optical elements.

1 Introduction
When the particle energy is low and the beam

current is high, the space charge force of the beams
can not be ignored. In this case, accuracy
calculations for the particle trajectories are very
complicated. So, linear approximation is usually
adopted. However, in the beam transport
experiments of intense beams, beam hallo can be
observed obviously, even the hallo beams are cut
off with aperture lilts, on the following beam lines,
beam hallo still appears. That is because of
nonlinear effects of the beam optics elements,
especially for the intense beams. In the intense
accelerators, such as medical proton linear
accelerators, Accelerator Driven System Nuclear
Power and so on, the nonlinear transport of intense
beams should be taken into account, so that high
beam transmission can be obtained.

There are two ways to calculate nonlinear
transport for the intense beams: numerical methods
(That is solving fields and calculating trajectories) and
analytical methods. The former methods are usually used
for short beam transport systems (say, ion attracting
systems in the front of ion sources). Because of large
memory equerry of numerical calculations, analytical
approach is convenient for the very long beam line
calculations.

Lie algebraic methods[1] provide a good tool to
study nonlinear transport of intense beams. The key
problem is how to express the electric potentials of the
beams. Because different particle phase space
distributions have different potentials, and they will
evolve with the particle motions. So, it is a very difficult
problem to calculate electric potentials of the beams.
However, in the case of K-V distributions, the electric
potentials of the beams can be calculated easily. In this
paper, we present the nonlinear transport of intense
beams in quadrupole magnets analyzed with Lie
algebraic methods.

2 Hamiltonian and its expansion[2]

In the Cartesian coordinates (x,y,z), the Hamiltonian
of a particle with time t as independent variable is
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where m0 is the particle rest energy, q is the charge, px, py

and pz is the x, y, and z component of the particle

momentum, Ax, Ay and Az is the x, y, and z component of

the magnetic vector potential, φ is the electric potential, c

is the light velocity. Here, the canonical variables are

η=(x, y, z, px, py, pz).

Introduce variable pt=−Ht(x�y�z�px�py�pz�t)�

solve pz from pt , one obtains�
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Define new canonical variables ζ=�x, y,τ,x’ , y’, p
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where T =ct �β0=c/v0�v0 is the velocity of reference

particle��p0 is the momentum of reference particle;

pT=pt/(p0c); p 0
T is the value of pT for reference particle�

Under the transformation expressed by eq.(3), the new

Hamiltonian is
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For the magnetic quadrupoles, =A zxy
G
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the electric potential excited by the charged particle

beams in the case of K-V distribution is
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where I is the beam current of the beam bundles; Trf is

the beam repetition period; X, Y and Z are the pulsed

beam dimensions; zr is the longitudinal position of the

arbitrary particle relative to what of the reference particle;

µx, µy and µz are the beam shape factors of the bundles,

expressed as
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Substitute eq.(5) into eq.(4) , one obtains

{ −++−+−= 222
0

220 )](([ τβµµµτ zyxT yxQppH

} −++′−′− )(
2

]
1 22

0
2

1
22

22
0

yx
p

qG
yx

γβ

0
0 /)( βτ Tpp + (7)

where

cXYZp

IT
Q

rf

0008

3

γπε
= (8)

Expand the Hamiltonian (7) about the

equilibrium orbit, we have
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3 First order approximation

The linear map M2 is expressed as

:):exp( 22 f−=M (11)

where�:f2: is Lie operator�when acting on another

function, it perform Poisson bracket operation�and

22 Hf l−= �  l is the length of quadrupoles � (12)

Let the subscript “1”expresses the first order terms of the

map�and M2 act on the components of the canonical

variable ζ�one obtains the first order approximation

solutions of the particle trajectories�expressed in matrix

form, they are
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4 Second order approximation

The second order map M3 can be expressed as

M3=:f3:�where
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Let the map M3 act on the linear solution ζ1

= ),,,,,,( ττ pyyxx ′′′ �one obtains the second

order solutions ζ2 (the subscript "2" expresses second

order) of the map. The results are listed as the following
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Because the paper is limited up to three pages,
the second terms of ,2,22, yyx ′′ 22, ττ pand are not

listed here.

5 Discussions

It is a very complex procedure to calculate the

nonlinear transport of intense pulsed beams. Because the

electrical potential of the beams depends on the beam

dimensions, and the beam dimensions are related to the

electric potential also, we can only solve the problem by

iterations. Usually, we should provide the initial beam

dimensions, and the first step: calculate the electric

potential, next step: calculate particle trajectories, go to

the first step… After several iterations we can obtain

accuracy solutions.
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