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Abstract
We present new analytical results for short-range  

geometric wakefields of slowly tapered accelerator 
structures in 2D geometry.  

INTRODUCTION
Wakefields, and in particular geometric wakefields, are 

important for high intensity beam dynamics in 
accelerators. Since tapering is routinely used to reduce the 
wakefields, understanding the taper wakefield is of great 
value. Wakefields due to tapered structures were studied 
by many authors (see [1-3] for references and reviews). 

Nevertheless, the regime of very short bunches as well 
as small tapering angles, notoriously difficult to calculate 
with EM solvers, has not been fully explored. 
Understanding of this regime becomes more pressing 
since the bunches are getting shorter while many modern 
accelerator structures, i.e. superconducting cavities, 
smoothly tapered collimators, etc., often have the tapering 
angle gradually varying all  the way down to zero.

Another motivation for this paper comes from the 
recent work [4-5], that showed how to find the wakefields 
due to arbitrarily short bunches and arbitrary geometry, as 
long as all wakefield singularities are known. We remind 
that the wakes near the origin are usually dominated by 
singularities. For instance, all collimator-like structures 
obey the so-called optical model, and, in 2D case, the 
point-charge wakefield is [1] 

1
0 max min( ) Log( / ) ( )optW z Z c r r z , (1) 

where Z0 is the free space impedance, rmax and rmin are 
the maximum and minimum radii, and (z) is the delta-
function. Similarly cavity-like structures obey the 
diffraction model [1],  

2 1 1/2
0 min( 0) / 2dW z Z c g r z , (2) 

where g denotes cavity length. (In our sign convention 
( ) 0zW corresponds to the energy loss of a unit test 

charge that is trailing distance z>0 behind the driving 
charge.)

As we will show in this paper, the wakefield of 
smoothly tapered structures (with 1st derivative of the 
radial boundary matched to zero at the  minimum cross-
section joints) has an additional singularity, 1/3( ) ~z zW .
This singularity must be accounted for to find the 
wakefields due to smooth structures relying on method of 
[4-5]. 

In the rest of the paper we sketch the derivation of new 
analytical results for short-range  geometric wakefields of 
linearly or smoothly tapered structures,  comparing them 
with the results of EM code ECHO [6]. Full version of 
this work will be published shortly [7].  
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Figure 1: Geometry and length scales in the wake. 

We start with an axially symmetric linear taper which 
transitions from rmax to rmin  over the distance L (Fig.1). 
The wakefield of this taper, ( )zW , is fully defined by 
these three geometric parameters, and they (or their linear 
combinations with coefficients of order 1) often directly 
show up as characteristic length scales in ( )zW .

However, in the important case of a small angle taper, 
<<1, much shorter length scales may show up in the 

short-range wake. Their origin is illustrated in Fig. 1.    
The length scales simply follow from causality. Beam 

fields scattered at the beginning of the taper and then 
propagating as spherical wave-fronts (i.e. a ray sketched 
in green) will never catch up with the head of the bunch, 
because they must “clear the corner” at the very end of 
the taper. In the process they acquire at least  /c of delay, 
where  

2 2 21
max min 2( )r r L L L ,  (3) 

 so the length scale  emerges in the front portion of the 
wakefield. Since, for z< , the waves from the beginning 
of the structure haven’t caught up with the bunch, the 
wake at these distances cannot explicitly depend on L or 
rmax.   Instead, the geometric parameter dependence enters  

( )zW only through rmin and . If we define “pre-
catchup” to mean “before the beam fields scattered from 
the entire length of the transition had a chance to catch-up 
with the bunch”, then  is simply the length of that bunch. 
Equivalently,  is the length of the leading,  pre-catchup 
part of the point-charge wakefield. Similar parameter can 
be introduced if a tapered transition (linear or not) is a 
part of a more complicated geometry. 

For typical accelerator structures  is the only length 
scale associated with the pre-catchup wake. For 
geometries with large cross-sectional variation,  
rmax>9rmin, a shorter length scale, 4rmin , shows up as well, 
because beam fields scattered by the taper, may “cut 
across” (as shown in Fig. 1 in red) and acquire a 
minimum delay of min4 / /r c c . This would produce 
a peak in the wakefield at min4z r . For even larger 
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rmax/rmin ratios, multiple (k>1) cuts across along the taper 
could be possible,   resulting in features in the pre-catchup 
wakefield located at z= k, where 

1
min( 1 2 )4 , 0,k

k kk r k . (4) 
We emphasize, that for typical structures  is the only 

length scale that appears in the pre-catchup wake, while 
additional, shorter length scales appear only when 
rmax>9rmin. By causality, no shorter length scales can be 
present in this wakefield for z<min( , 1). 

Since for z<  the wakefield depends on only two 
independent parameters, rmin and , we expect 

( )zW to have a simple form, which is indeed the 
case. From dimensional analysis, (0 )W must scale as 

0 min/Z c r multiplied by a unitless factor. As was recently 
shown in [8], if all longitudinal dimensions of a small-
angle tapered structure are scaled by a factor a,  the new 
wakefield is related to the old one by 

; ( ; )W z aL aW az L .   (5) 

Applying this to a small angle taper, we conclude that  
0

min
min

( 0)
2

z
r

Z c
W z f

r
.  (6) 

Additional considerations [7] show that the function 
( )f u obeys (0 ) 1f  and (0 ) 1f .
In Fig. 2 we compare Eq. (6) with ECHO results for 

geometry of Fig 1, with fixed =0.1 and L=5 cm. To 
illustrate the convergence to point-charge wakefields, 
(scaled) wake-potentials for two different bunch lengths 
are plotted for each geometry. The curves overlap up to 
z=   and, near the origin,  they tend to 1 and -1 slope thus 
fully confirming Eq. (6).  

For rmax<9rmin (magenta and blue) the pre-catchup wake 
is especially simple, monotonically decaying up to z= ,
where it sharply drops further. For larger rmax/rmin (green 
and red) a peak shows up at  z=4rmin .
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Figure 2: ECHO wake-potentials scaled per Eq. (6). 

To our knowledge, Eq. (6) is a new result, describing 
the wakefield of a taper in a previously unexplored 
regime. For short bunches, minmin( , 4 )r , the 
energy loss factor due to this wakefield (normalized to 
that due to the optical model) is   

_ min max min/ / 2 Log /l l optk k r r r .   (7) 

Unlike the optical model wake, the short-range wake of 
a taper-in is accelerating. For long symmetrically tapered 
collimator one needs to double the rhs above and add 1. 

Eq. (7) differs significantly from previously published 
expressions (taken to the short bunch limit) derived 
analytically [2], or by empirical analysis [9].   

Adjacent Tapers and Other Structures 

−0.005 0 0.005 0.01 0.015 0.02 0.025
0

20

40

60

80

100

120

140

160

180

z, cm

W
σ , V

/p
C

Z
0
c/(2πr

min
θ

2
)

L
2
θ

2
2/2

Z
0
c/(2πr

1
θ

1
)

L
2
θ

2
2/2+L

1
θ

1
2/2

two tapers, σ=5μm
two tapers, σ=1μm
single taper, σ=5μm
single taper, σ=1μm

θ
2

θ
1

r
min

r
1

r
max

L
1 L

2

Figure 3: Geometries (inset) and ECHO wake-potentials.  

The analysis above can be easily extended to more 
complicated geometries. For instance, a piece-wise linear 
transition from max min 1 1 2 2r r L L  to minr shown in 
Fig. 3 (inset, red), must have the same wake as just the 
inner taper of this transition (inset, blue dash) up until z
reaches the value of 2

2 2 2 / 2L   due to this inner 
taper. This and further conclusions are illustrated in Fig. 3 
by the ECHO results calculated for rmin=2 mm, L1=2 cm, 

1=1/10, L2=3.6 cm and 2=1/18.  Repeating the analysis 
describing Fig. 1 (and  focusing on the convex case, 

1 2  )  we conclude that the pre-catchup  wake of the 
dual taper lasts up to z equalling the sum of  parameters 
for  both tapers,  

2 21 1
1 2 1 1 2 22 2dt L L .  (8) 

The wake at the origin is given by Eq. (6), while 
( )dtzW is approximately given by Eq. (6) still taken 

at z=0 but with rmin replaced with the minimum radius of 
the outer taper. This approximation becomes more and 
more precise, if all the radii get closer and closer.  

The fact that the wakes due to a single and double 
taper-ins coincide up to 2z illustrates that Eq.(6) is 
applicable to any structure  that has linear tapering near 
the minimum radius, as long as one limits z not to exceed 
the parameter  due to this tapering.  If the tapering 
occurs in a (long) symmetric collimator geometry, to get 
the total wakefield one must double Eq.(6) and add the 
optical model, Eq. (1). Similarly, for symmetrically 
tapered cavity-like geometries, one must add the 
diffraction model, Eq. (2) to Eq. (6).  For such structures, 
Eq. (3) must be replaced with  

21
2 / (1 / )cav L L g ,   (9) 

where L is the length of each taper and g is the cavity 
length (at r=rmin, tapered and un-tapered parts included). 
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SMOOTH NON-LINEAR TAPER 
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Figure 4: Wake-potentials due to smooth geometry (inset). 

Consider non-linear taper with first derivative of the 
boundary matched to zero at the minimum cross-section 
(we call this “smooth” tapering). Eq. (6) is not directly 
applicable here. However, approximating such structures 
as a sequence of linear tapers, we can extend the analysis 
above to this case as well. 

For instance, consider a circular arc segment of extent 
2  <<1 and radius R (Fig. 4, inset). It can be approximated 
by n linear tapers of equal length L/2n-1. For n=1 it is a 
linear taper with angle  and 2L R , whose wakefield 
is given by Eq.(6). For n=2, it is two tapers 
with 3

1 2
, 1

2 2
 of length L/2 each. Similar case was 

illustrated in Fig. 3. Extending Eq. (8) and taking n to 
infinity we find the pre-catchup wakefield length to be   

22 2 / 3s R L L .   (10) 
From equations shown in Fig. 3, we see that a fixed 

z<< s can be approximated by a sum of  parameters due 
to the first k<n inner sub-tapers. Thus, for k>>1, k~2nz1/3 
and W (z)~2n/k leading to W (z)~z-1/3. Detailed analysis 
[7] results in the singular part of the wakefield given by  

1/31/3
0 0

min min

(0 )6( '' )( ) 62 2s

Z c Z c r zRW z zr r
, (11) 

where r(s) is the radial boundary and  s=0 is the end of 
the taper-in. The rhs form of Eq. (11) is applicable to 
arbitrary boundaries as long as '(0 ) 0r , ''(0 ) 0r , 
and higher derivatives could be neglected. 

Similar derivation, leading to W (z)~z-m/(2m+1), can be 
done for structures smooth up to the mth derivative of the 
boundary, as well as for the infinitely smooth case [7].  

The wake-potential due to Eq. (11) can be expressed 
via hyper-geometric functions. In Fig. 4, it is plotted with 
ECHO results (for R=20 cm, rmin =1 mm, L=1 cm), and 
the agreement is very good. Since Eq.(11) only includes 
the singular part of the wakefield, we had to separately 
find the non-singular part, Wns(z), as explained in Fig. 4.  

Eq. (11) (and Eq. (6)) allows a more general scaling 
than is given by Eq. (5). For instance, if all radial 
dimensions are scaled by an arbitrary factor b, while all 
longitudinal ones are scaled by ab2 (and  remains small),  

2; , ( ; , )W z ab L bR aW az L R .  (12) 

This scaling for pre-catchup regime wakefield can be 
shown to hold for all slowly tapered structures, including 

tapered collimator and cavity-like geometries, since the 
optical and diffraction model wakes scale proportionally.  

Finally, we remark that the short bunch loss factor due 
to (accelerating) wakefield of Eq. (11) is ~rmin

-1  -1/3. For 
small  and rmin the energy gain could be very big.  

DISCUSSION 
We present new analytical results for short-range  

geometric wakefields of slowly tapered accelerator 
structures. We establish the length scale parameter  that 
gives the length of the wakefield in the pre-catchup 
regime. This wakefield is very simple and, for linear 
tapering, is given by Eq. (6).  

For typical accelerator geometries  is the only length 
scale of the wakefield in the pre-catchup regime. For 
large cross-sectional variation, rmax>9rmin, a shorter 
length, 4rmin , shows up as well. By causality, no shorter 
length scales can be ever present for z<min( , 4rmin ). 

We established that for structures with boundary 
tapered smoothly to and/or from rmin the wakefield has 

1/3z  singularity, which is important for finding their 
point-charge wakefields by method of [4-5]. Also, within 
approximations made, the wakefield due to a smooth 
taper-in structure shows an intriguing property of 
providing strong acceleration and transverse focusing. 
While other wakes (resistive wall, surface roughness, etc.) 
as well as practical considerations may limit the 
observability of this effect, our analysis explains why it 
shows up in EM simulations, which often approximate 
smooth boundaries as elliptical arcs, i.e. assuming 
discontinuous 2nd derivative.  One may have to reassess 
the validity of such boundary approximations for the case 
of very short bunches, since real accelerator structure 
surfaces do not have such discontinuities. 

While we presented examples due to a taper-in, our 
results are directly applicable to other structures, with 
linear, or smooth tapering near rmin, as long as we add   
appropriate asymptotic model (i.e. optical or diffraction).   

We focused here on the longitudinal, but the causality 
arguments similarly apply to the transverse wake. Thus 
we expect Eqs. (3, 4, 9, 10) to remain the same, while 
Eq.(6), Eq. (11) and Eq. (12) to acquire factors ~  rmin

-1, 
~z rmin

-2 and a-1b-2 respectively. Extending this analysis to 
the case of 3D geometries will be performed in the future. 
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