PASSIVE LANDAU CAVITY EFFECTS IN THE NSLS-II STORAGE RING*

G. Bassi[†], A. Blednykh, S. Krinsky, BNL, Upton, NY 11973-5000, USA

Abstract

In middle-energy 3rd generation synchrotron light sources with small transverse emittance, higher harmonic cavities (Landau cavities) are installed for bunch lengthening to increase the Touschek lifetime, and to provide Landau damping for beam stability [1]-[5]. In this contribution we study the effects of passive Landau cavities in the NSLS-II storage ring for uniform fill-patterns with the OA-SIS tracking code [6],[7]. In our simulations we use an earlier set of parameters of the NSLS-II storage ring since our main purpose is to illustrate the basic mechanism of passive Landau cavity operations. It is on our agenda to study the actual parameters of the ring and discuss the case with non uniform fillings.

ACTIVE LANDAU CAVITY

Consider the rf voltage produced by the fundamental rf cavity and by a *m*-harmonic cavity (Landau cavity)

$$V(\tau) = V_{rf}[\sin(\omega_{rf}\tau + \phi_s) + K\sin(m\omega_{rf}\tau + \phi_n] - \frac{U_s}{e},$$

To compensate for the synchrotron radiation energy loss

Parameter	Symbol	Value	Unit
Energy reference particle	E_0	3	GeV
Average current	I_0	500	mA
Number of bunches	М	1300	
Harmonic number	h	1300	
Circumference	С	780.3	m
Bunch duration	$\sigma_{ au}$	12	ps
Energy spread	σ_p	9.8×10^{-4}	
Energy loss per turn	U_s	1172	KeV
Momentum compaction	α	3.68×10^{-4}	
Revolution frequency	ω_0	$2\pi \times 0.384$	MHz

Table 1: NSLSII Parameters

 U_s , we require V(0) = 0. In addition, we require $\frac{\partial V}{\partial \tau}\Big|_{\tau=0} = \frac{\partial^2 V}{\partial \tau^2}\Big|_{\tau=0} = 0$. These conditions lead to $V(\tau) = V_{rf}[\sin(\omega_{rf}\tau + \phi_s) - \sin\phi_s]$

$$-\frac{\sin\phi_s}{m^2}\big(\cos m\omega_{rf}\tau - 1\big) - \frac{\cos\phi_s}{m}\sin m\omega_{rf}\tau\big]$$

In Fig.1 (top left) we show the phase space portrait with only the main rf cavity (red line) and with a third-harmonic Landau cavity (blue line) with parameters for the NSLS-II storage ring (see Table1). The optimal conditions satisfied by the voltage $V(\tau)$ induce a bunch lengthening without an increase of the energy spread.

02 Synchrotron Light Sources and FELs

PASSIVE LANDAU CAVITY: GAUSSIAN BUNCHES

For passive Landau cavity operations, the total voltage is given by the sum of the voltage produced by the powered main rf cavity and the voltage induced by the beam traversing the Landau cavity. In the case of stationary Gaussian bunches uniformly distributed around the ring for a narrowband resonator wake with frequency ω_R , shunt impedance R_s and quality factor Q, the total voltage reads (see Appendix A)

$$V(\tau) = V_{rf}\sin(\omega_{rf} + \phi_s) + i_b R_s \cos\psi\cos(\psi + m\omega_{rf}\tau)$$

where $i_b = 2I_0 e^{-\frac{1}{2}(m\omega_{rf}\sigma_{\tau})^2}$ and the detuning angle ψ satisfies

$$\tan \psi = 2Q\delta, \qquad \delta = \frac{1}{2} \left(\frac{\omega_R}{m\omega_{rf}} - \frac{m\omega_{rf}}{\omega_R} \right). \tag{1}$$

Imposing the same conditions as for the active Landau cavity (V(0) = V'(0) = V''(0) = 0) we have to satisfy

$$V_{rf} \sin \phi_s = -i_b R_s \cos \psi^2 + \frac{U_s}{e},$$

$$V_{rf} \cos \phi_s = i_b R_s m \cos \psi \sin \psi,$$

$$V_{rf} \sin \phi_s = -m^2 i_b R_s \cos \psi^2,$$

which, solved for ϕ_s , ψ and R_s give

$$\sin \phi_s = \frac{m^2}{m^2 - 1} \frac{U_s}{eV_{rf}} = \frac{m^2}{m^2 - 1} \frac{U_s}{\sin \phi_{s0}}$$
$$\tan \psi = -m \cot \psi,$$
$$R_s = \frac{V_{rf} \sin \phi_s}{i_k m^2 \cos \psi^2}.$$

The optimal parameters for passive Landau cavity operations of the NSLS-II storage ring according to Table1 are thus

$$\begin{aligned} \sin \phi_s &= 0.2637, \\ \tan \psi &= 10.97 \Longrightarrow \psi = 84.79^\circ, \\ R_s &= 17.77 M\Omega. \end{aligned}$$

where the detuning frequency of the Landau cavity $\Delta \omega = \omega_R - m\omega_{rf}$ can be calculated from eq.1. According to Table2, $R_2 = 1800M\Omega$ is much bigger than R_s , so the optimal conditions for Landau cavity operations can not be met. Nevertheless, if we notice that $i_b R_s \cos \psi = 1.61MV$, roughly one third of $V_{rf} = 5MV$ and choose the detuning angle ψ to meet the condition $i_b R_2 \cos \psi = 1.61MV$ it follows that the detuning frequency is $\Delta \omega = 2\pi \times 83.8$ kHz for $Q_2 = 10^8$.

Creative Commons Attribution 3.0 (CC BY 3.0)

3

j

— cc Creative Commons Attribution 3.0

^{*} Work supported by DOE contract DE-AC02-98CH10886

[†] gbassi@bnl.gov

Parameter	Symbol	Value	Unit
RF frequency main/Landau	$\omega_{rf}/m\omega_{rf}$	$2\pi \times 500/1500$	MHz
RF voltage main	V_{rf}	5	MV
Shunt impedance main/Landau	R_{1}/R_{2}	11.7/18000	$M\Omega$
Quality factor main/Landau	Q_1/Q_2	65000/10 ⁸	
Detuning main RF frequency	$\Delta\omega$	$-2\pi \times 8.1$	kHz

main rf main. rf + Landau (m=3)

50

6000

4000

number of turns

100

∆f=120kHz

∆f=95kHz

∆f=85kHz

∆f=75kHz

∆f=72kHz

∆f=70kHz

∆f-65kHz

8000

150

1000

-50

 τ (ps)

120

100

80 80

60

40

20

0

1800

1600

0

-200 L -150

-100

-50

2000

4000 6000 number of turns

bunch length

Table 2: RF Parameters Main Cavity and Third-Harmonic (m=3) Landau Cavity

Af-120Khz

∆f=95kHz

∆f=85kHz

∆f=75kHz ∆f=72kHz

∆f=70kHz ∆f=65kHz

8000

∆f=120kHz

∆f=95kHz ∆f=85kHz

∆f=75kHz

∆f=72kHz

∆f=70kHz

∆f=65kHz

100

150

50

Ò

 τ (ps)

10000

from 70 to 75kHz, not far from the value predicted by the calculation with stationary Gaussian bunches. For example the bunch lengthening for $\Delta f = 72$ kHz is 50ps. For smaller values of Δf the energy spread begins to increase as shown in Fig.1 (bottom left) and the longitudinal distribution starts to show a doubled peaked structure, as shown in Fig.1 (bottom right).

CONCLUSIONS

We studied passive Landau cavity effects induced by a third harmonic rf cavity for uniform fillings. We simulated numerically the detuning angle for optimal bunch lengthening and found it to be in agreement with the analytical theory for Gaussian bunches. For smaller values of the optimal detuning angle the phase space is populated around two phase space points giving to the longitudinal distribution a doubled peaked structure. In the analysis to date we did not study non uniform fillings and we did not include

02 Synchrotron Light Sources and FELs

transients effects induced by the impedance of the fundamental rf cavity. We plan to perform these studies together with the inclusion of a model to simulate the effects of a feedback system.

APPENDIX A: PASSIVE LANDAU CAVITY FOR STATIONARY GAUSSIAN BUNCHES

Consider the total voltage produced by stationary Gaussian bunches uniformly distributed around the ring for a narrow-band resonator wake

$$V(\tau) = \int_{-\infty}^{\tau} d\tau' \rho(\tau') \sum_{k=-\infty}^{+\infty} W\left(k\frac{T_0}{M} + \tau - \tau'\right), \quad (2)$$
 where

$$W(\tau) = 2\alpha R_s e^{-\alpha\tau} \left(\cos\bar{\omega}\tau - \frac{\alpha}{\bar{\omega}}\sin\bar{\omega}\tau\right) (\tau > 0),$$

$$\rho(\tau) = \frac{Q}{\sqrt{2\pi\sigma_\tau}} e^{-\frac{\tau^2}{2\sigma_\tau}},$$

and $\alpha = \omega_R/2Q$, and $\bar{\omega} = \sqrt{\omega_R^2 - \alpha^2}$. The summation over k has been extended to $-\infty$ taking advantage of the causality property of the wake function. From

$$W(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega e^{-i\omega\tau} Z^{||}(\omega), \ \rho(\tau) = \int_{-\infty}^{\infty} d\tau e^{i\omega\tau} \tilde{\rho}(\omega)$$

it follows

$$V(\tau) = \frac{Q}{2\pi} \int_{-\infty}^{+\infty} d\omega \tilde{\rho}(\omega) e^{i\omega\tau} \sum_{k=-\infty}^{+\infty} e^{-i\omega k \frac{T_0}{M}} Z^{||}(\omega).$$

Using the following identity and changing integration variable

$$\sum_{k=-\infty}^{+\infty} e^{ikz} = 2\pi \sum_{p=-\infty}^{+\infty} \delta(z - 2\pi p), \quad y = \frac{\omega T_0}{M}, \quad (3)$$

we have

$$V(\tau) = \frac{\omega_0 M}{2\pi} \sum_{p=-\infty}^{+\infty} \tilde{\rho}(pM\omega_0) e^{-ipM\omega_0\tau} Z^{||}(pM\omega_0).$$

Assuming M = h (h = harmonic number) and the narrowband resonator impedance sharply peaked at $\omega = m\omega_{rf}$ $(\omega_{rf} = h\omega_0)$

$$Z^{||}(\omega) = \frac{R_s}{1 + iQ\left(\frac{\omega_R}{\omega} - \frac{\omega}{\omega_R}\right)} \stackrel{\omega = m\omega_{rf}}{=} \frac{R_s}{1 + i2Q\delta},$$

where $\delta = \frac{1}{2} \left(\frac{\omega_R}{m\omega_{rf}} - \frac{m\omega_{rf}}{\omega_R}\right),$ (4)

in the sum over p we keep only terms with p = -m, m

$$V(\tau) = \frac{\omega_0 M}{2\pi} \Big(\tilde{\rho}(-m\omega_{rf}) e^{im\omega_{rf}\tau} Z^{||}(m\omega_{rf}) + \tilde{\rho}(m\omega_{rf}) e^{-im\omega_{rf}\tau} Z^{||}(-m\omega_{rf}) \Big) = \frac{\omega_0 M Q R_s}{\pi (1+4Q^2 \delta^2)} e^{-\frac{1}{2}\omega^2 \sigma_\tau^2} (\cos m\omega_{rf}\tau - 2Q\delta \sin m\omega_{rf}),$$

02 Synchrotron Light Sources and FELs

A05 Synchrotron Radiation Facilities

where we used $\tilde{\rho}(\omega) = Q e^{-\frac{1}{2}\omega^2 \sigma_{\tau}^2}$. Using $I_0 = \omega_0 M Q/2\pi$ and defining $i_b = 2I_0 e^{-\frac{1}{2}(m\omega\sigma_{\tau})^2}$, the result can be cast in the form

 $V(\tau) = i_b R_s \cos \psi \cos(\psi + m\omega_{rf}\tau), \qquad (5)$ where $\tan \psi = 2Q\delta$.

APPENDIX B: CALCULATION OF LONG RANGE WAKEFIELD INTERACTION

We outline the algorithm for the self-consistent calculation of the long-range wakefield interaction. For simplicity, we consider the case of one bunch interacting with the voltage $V(\tau)$ produced by the bunch itself after n turns. The total voltage $V(\tau)$ from the previous k revolutions is therefore

$$V(\tau) = \sum_{k=-\infty}^{n} \int_{-\infty}^{\tau} d\tau' \rho_k(\tau') W\big[(n-k)T_0 + \tau - \tau'\big],$$

Assuming that the long-range wakefield is slowly varying for $\tau \in [(n-k)T_0 - 5\sigma_{\tau}, (n-k)T_0 + 5\sigma_{\tau}], k < n$, and using l = n - k we can calculate $V(\tau)$ by expanding W in Taylor series at lT_0

$$V(\tau) = \sum_{l=0}^{+\infty} \int d\tau' \rho_{n-l}(\tau') \Big(W(lT_0) + W'(lT_0)(\tau - \tau') + W''(lT_0)\frac{(\tau - \tau')^2}{2} + \cdots \Big)$$

$$= \sum_{l=0}^{+\infty} \Big[W(lT_0) + W'(lT_0)(\tau - \langle \tau \rangle_{n-l}) + W''(lT_0)\frac{(\tau^2 - 2\tau \langle \tau \rangle_{n-l} + \langle \tau^2 \rangle_{n-l})}{2} + \cdots \Big).$$

Thus the calculation of $V(\tau)$ at turn *n* can be done by storing the moments $\langle \tau \rangle_k, \langle \tau^2 \rangle_k, \cdots$ of the bunch over previous turns.

REFERENCES

- [1] K.Y. Ng, "Physics of Intensity Dependent Beam Instabilities", Fermilab-FN-0713.
- [2] A. Hofmann et.al., Proc. 11th International Conference on High Energy Accelerators, Geneva, 1980.
- [3] N. Towne, Proc. PAC99 (1999) 2828.
- [4] J.M. Byrd et al., Phys Rev. ST-AB5, 092001 (2002).
- [5] A. Blednykh et al., Proc. PAC05 (2005) 2544.
- [6] G. Bassi, in preparation.
- [7] G. Bassi et al., Paper TUPPP043, these proceedings.

ISBN 978-3-95450-115-1