Paper | Title | Page |
---|---|---|
WEOBB02 | Refraction Contrast Imaging via Laser-Compton X-Ray Using Optical Storage Cavity | 2146 |
|
||
We have been developing a pulsed-laser storage technique in a super-cavity for a compact x-ray sources. The pulsed-laser super-cavity enables to make high peak power and small waist laser at the collision point with the electron beam. Recently, using 357 MHz mode-locked Nd:VAN laser pulses which stacked in a super-cavity scattered off a multi-bunch electron beam, we obtained a multi-pulse x-rays through the laser-Compton scattering. Then, we performed a X-ray imaging via laser-Compton X-ray. The images have edge enhancement by refraction contrast because the X-ray source spot size was small enough. This is one of the evidences that laser-Compton X-ray is high quality. Our laser-Compton experimental setup, the results of X-ray imaging and future prospective will be presented at the conference. | ||
![]() |
Slides WEOBB02 [4.393 MB] | |
WEPPP090 | Stable RF Distribution System for the S-band Linac | 2924 |
|
||
The phase stabilization of the RF phase is key issue for the stable linac operation. An RF distribution system with femto-second stability has been developed for S-band linac using optic fiber links. The system uses a phase stabilized optical fiber (PSOF) and an active fiber length stabilization.* The phase stability is 0.1 degree (100f s) for 24 hours observation. In this paper, we present the test results of the system stability and evaluation of the existing RF reference line by using this system.
* Naito et. al. IPAC10 MOPC146 |
||
WEPPD055 | Gamma-rays Generation with 3D 4-mirror Cavity for ILC Polarized Positron Source | 2645 |
|
||
We are conducting gamma-rays generation experiment by the laser-Compton scattering using a Fabry-Perot cavity. We developed a 3D 4-mirror cavity, and it is installed at the KEK-ATF. By using a 3D 4-mirror cavity, small laser spot can be achieved with stable resonant condition. In addition, we aim 1900 times enhancement of input laser power by a 4-mirror cavity to increase the number of gamma-rays. | ||