Paper | Title | Page |
---|---|---|
WEOAB03 | An Update on a Superconducting Photonic Band Gap Structure Resonator Experiment | 2140 |
|
||
Funding: This work is supported by the U.S. Department of Energy (DOE) Office of Science Early Career Research Program. We present an update on the 2.1 GHz superconducting rf (SRF) photonic band gap (PBG) resonator experiment in Los Alamos. The SRF PBG cell was designed to operate at 2.1 GHz. PBG cells have great potential for outcoupling long-range wakefields in SRF accelerator structures without affecting the fundamental accelerating mode. Using PBG structures in superconducting particle accelerators will allow operation at higher frequencies and moving forward to significantly higher beam luminosities thus leading towards a completely new generation of colliders for high energy physics. However, the technology of fabrication of PBG accelerator cells from niobium has not been well developed to date. Here we report the results of our efforts to fabricate a 2.1 GHz PBG cell and to test it at high gradients in a liquid helium bath at the temperature of 2 Kelvin. The high gradient performance of the cell will be evaluated and the results will be compared to simulations with the CST Microwave Studio. |
||
![]() |
Slides WEOAB03 [2.061 MB] | |
THPPR067 | A Conceptual 3-GeV LANSCE Linac Upgrade for Enhanced Proton Radiography | 4130 |
|
||
Funding: Work supported by the United States Department of Energy, National Nuclear Security Agency, under contract DE-AC52-06NA25396 A conceptual design of a 3-GeV linac upgrade that would enable enhanced proton radiography at LANSCE is presented. The upgrade is based on the use of superconducting accelerating cavities to increase the present LANSCE linac output energy from 800 MeV to 3 GeV. The LANSCE linac at Los Alamos National Laboratory currently provides H− and H+ beams to several user facilities that support Isotope Production, NNSA Stockpile Stewardship, and Basic Energy Science programs. Required changes to the front-end and to the RF systems to meet the new performance goals, and changes to the existing beam switchyard to maintain operations for a robust user program are also described. |
||