Author: Notani, M.
Paper Title Page
MOPPC036 Influence of Intense Beam in High Pressure Hydrogen Gas Filled RF Cavities 208
 
  • K. Yonehara, M.R. Jana, M.A. Leonova, A. Moretti, M. Popovic, T.A. Schwarz, A.V. Tollestrup
    Fermilab, Batavia, USA
  • M. Chung
    Handong Global University, Pohang, Republic of Korea
  • M.G. Collura
    Politecnico di Torino, Torino, Italy
  • G. Flanagan, R.P. Johnson, M. Notani
    Muons, Inc, Batavia, USA
  • B.T. Freemire, Y. Torun
    IIT, Chicago, Illinois, USA
 
  Funding: This work is supported by US DOE under contract DE-AC02-07CH11359.
Breakdown plasma in a high-pressure hydrogen gas filled RF cavity has been studied from a time domain spectroscopic light analysis. The observed breakdown plasma temperature and density reached 21,000 K and 1020 cm-3, respectively. The electron recombination rate has been evaluated from the decay of plasma density in various gas pressures. The recombination mechanism in dense plasma will be discussed. Finally, the similarity and difference of the breakdown processes between the high-pressure hydrogen gas filled RF cavity and a vacuum RF one will be discussed.
 
 
THPPR062 Handling GEM*STER Volatile Radioactive Fission Products 4115
 
  • M. Notani, C.M. Ankenbrandt, R.P. Johnson, T.J. Roberts
    Muons, Inc, Batavia, USA
  • C. Bowman
    ADNA, Los Alamos, New Mexico, USA
 
  A next-generation advanced technology of nuclear power has been developed for many years. One of the promising future reactor designs with accelerator-produced neutrons is GEM*STAR (Green Energy Multiplier*Subcritical Technology for Alternative Reactors) developed by Accelerator Driven Neutron Application (ADNA), which is a subcritical thermal-spectrum reactor operating with molten salt fuel in a graphite matrix. GEM*STAR is able to use natural uranium as well as unreprocessed spent fuel from light-water reactors (LWR), generating as much electricity as the LWR had generated from the same fuel. Since the advanced design of GEM*STAR is quite different from LWR that uses solid nuclear fuel loaded in the Zircaloy, it requires emission control for volatiles emitted from the molten salt fuel, like as radioactive iodine and cesium. The volatiles caught in the helium gas circulating around the core reactor will be trapped in the cryogenic bottles. Numerical simulations to estimate the amount of fission products were performed for the design of confinement of the volatiles. The result of simulation with spent nuclear fuel from LWR is presented.