Paper | Title | Page |
---|---|---|
MOPPD046 | Lifetime of the Highly Efficient H− Ion Sources | 466 |
|
||
Funding: Work supported by grant DE-SC0006267, and STFC JAI grant ST/G008531 Factors limiting operating lifetime of Compact Surface Plasma Sources (CSPS) are analyzed and possible treatments for lifetime enhancement are considered. CSPSs have high plasma density (up to 1014 cm-3), high emission current density of negative ions (up to 8 A/cm2), small (1–5 mm) gap between cathode emitter, and a small extraction aperture in the anode. They are very simple, have high energy efficiency up to 100 mA/kW of discharge (~100 times higher then modern large Volume RF SPS) and have a high gas efficiency (up to 30%) using pulsed valves. CSPSs are very good for pulsed operation but electrode power density is often too high for dc operation. However, CSPSs were successfully adopted for DC operation with emission current density ~300 mA/cm2 in Hollow cathode Penning Discharge and up to 1 A/cm2 in Spherical focusing semiplanotron. Flakes from electrodes sputtering and blistering induced by back accelerated positive ions are the main reasons of ion source failure. Suppression of back accelerated positive ions, flakes explosion by pulsed discharges, and flakes gasification by discharge in NF3 (or XeF2) can be used for significant increase of operating lifetime of CSPSs. |
||
THEPPB001 | Design and Fabrication of The ESS-Bilbao RFQ Prototype Models | 3228 |
|
||
As part of the development of the ESS-Bilbao Accelerator in Spain, two different sets of radio frequency quadrupole (RFQ) models have been developed. On one hand, a set of four oxygen free high conductivity copper weld test models has been designed and manufactured, in order to test different welding methods as well as other mechanical aspects involved in the fabrication of the RFQ. On the other hand, a 352.2 MHz four vane RFQ cold model, with a length of 1 meter, has been designed and built in Aluminum. It serves as a good test bench to investigate the validity of different finite element analysis (FEA) software packages. This is a critical part, since the design of the final RFQ will be based on such simulations. The cold model also includes 16 slug tuners and 8 couplers/pick-up ports, which will allow to use the bead-pull perturbation method, by measuring the electric field profile, Q-value and resonant modes. In order to investigate fabrication tolerances, the cold model also comprises a longitudinal test modulation in the vanes, which is similar to the one designed for the final RFQ. | ||
THPPP051 | Status of the RAL Front End Test Stand | 3856 |
|
||
The Front End Test Stand (FETS) under construction at RAL is a demonstrator for front end systems of a future high power proton linac. Possible applications include a linac upgrade for the ISIS spallation neutron source, new future neutron sources, accelerator driven sub-critical systems, a neutrino factory etc. Designed to deliver a 60mA H-minus beam at 3MeV with a 10% duty factor, FETS consists of a high brightness ion source, magnetic low energy beam transport (LEBT), 4-vane 324MHz radio frequency quadrupole, medium energy beam transport (MEBT) containing a high speed beam chopper plus comprehensive diagnostics. This paper describes the current status of the project and future plans. | ||