Author: Conway, J.V.
Paper Title Page
MOPPR079 Horizontal Beam-size Measurements at CESR-TA Using Synchrotron-light Interferometer 972
 
  • S. Wang, J.V. Conway, D.L. Hartill, M.A. Palmer, D. L. Rubin
    CLASSE, Ithaca, New York, USA
  • R.F. Campbell, R. Holtzapple
    CalPoly, San Luis Obispo, California, USA
 
  Funding: DOE Award DE-FC02-08ER41538 NSF Award (PHY-0734867) NSF Award (PHY-1002467) NSF Award (PHY-1068662).
A horizontal beam profile monitor utilizing visible synchrotron radiation from a bending magnet has been designed and installed in CESR. The monitor employs a double-slit interferometer which has been successfully implemented to measure horizontal beam sizes over a wide range of beam currents. By varying the separation of the slits, beam sizes ranging from 50 to 500 microns can be measured with a resolution of approximately 5 microns. The method for extracting the horizontal beam size from the interference pattern is presented and its application to intrabeam scattering studies is described. A configuration for measuring the small vertical beam size is also discussed.
 
 
TUPPR062 The Conceptual Design of a Vacuum System for the ILC Damping Rings Incorporating Electron Cloud Mitigation Techniques 1960
 
  • J.V. Conway, Y. Li, M.A. Palmer
    CLASSE, Ithaca, New York, USA
 
  Funding: Work Supported by DOE Award DE-SC0006505.
We describe the conceptual design of the vacuum system for the damping rings of the International Linear Collider. The design incorporates a range of techniques to suppress the development of the electron cloud (EC) in the positron ring. These techniques include coatings with low secondary electron yield (SEY), grooved chambers, clearing electrodes and antechambers for photoelectron control. The EC mitigation choices are based on the ILC Electron Cloud R&D program, which has been conducted at the Cornell Electron-Positron Storage Ring Test Accelerator (CesrTA) and at other collaborating institutions*. The conceptual designs for vacuum chambers in drifts, dipoles, wigglers and quadrupoles are presented.
* The International Linear Collider: A Technical Progress Report, E. Elsen et al., Eds., pp. 71-81 (2011).
 
 
TUPPR063 Investigation into Electron Cloud Effects in the ILC Damping Ring Design 1963
 
  • J.A. Crittenden, J.V. Conway, G. Dugan, M.A. Palmer, D. L. Rubin
    CLASSE, Ithaca, New York, USA
  • L.E. Boon, K.C. Harkay
    ANL, Argonne, USA
  • M.A. Furman
    LBNL, Berkeley, California, USA
  • S. Guiducci
    INFN/LNF, Frascati (Roma), Italy
  • M.T.F. Pivi, L. Wang
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by the U.S. Department of Energy DE-SC0006506
We report modeling results for electron cloud buildup in the ILC damping ring lattice design. Updated optics, wiggler magnet, and vacuum chamber designs have recently been developed for the 5-GeV, 3.2-km racetrack layout. An analysis of the synchrotron radiation profile around the ring has been performed, including the effect of photon scattering on the interior of the vacuum chamber. Operational implications of the resulting electron cloud buildup will be discussed.
 
 
WEOAB02 Photocathode R&D at Cornell University 2137
 
  • L. Cultrera, I.V. Bazarov, J.V. Conway, B.M. Dunham, Y. Hwang, Y. Li, X. Liu, R. Merluzzi, T.P. Moore, K.W. Smolenski
    CLASSE, Ithaca, New York, USA
  • S.S. Karkare, J.M. Maxson, W.J. Schaff
    Cornell University, Ithaca, New York, USA
 
  Funding: This work has been supported by NSF DMR-0807731 and by DOE DE-SC0003965.
A wide R&D program is pursued at Cornell University aimed at preparation and characterization of high efficiency photocathodes for the Energy Recovery Linac photoinjector. The currently investigated photoemitters include both positive and negative electron affinity materials such as respectively bi-alkali antimonide and III-V semiconductors activated with Cs and either O or F. Analysis techniques as Scanning Auger Spectroscopy, Low Energy Electron Diffraction, Reflected High Energy Electron Diffraction and work function measurements are used to characterize the surfaces properties of the specimens. Spectral response, photoemission uniformity, electron energy distributions are used to characterize the quality of the photoelectron beam and to relate it to the measured surface properties.
 
slides icon Slides WEOAB02 [6.934 MB]