Author: Boccone, V.
Paper Title Page
MOPPD077 Studies for an Alternative LHC Non-Linear Collimation System 544
 
  • L. Lari, R.W. Assmann, V. Boccone, F. Cerutti, A. Mereghetti, R. Versaci, V. Vlachoudis
    CERN, Geneva, Switzerland
  • A. Faus-Golfe, L. Lari, J. Resta-López
    IFIC, Valencia, Spain
 
  Funding: This work has been carried out through of the European Coordination for Accelerator Research and Development (EuCARD), co-sponsored by EU 7th Framework Program.
A LHC nonlinear Betatron cleaning collimation system would allow larger gap for the mechanical jaws, reducing as a consequence the collimator-induced impedance, which may limit the LHC beam intensity. In this paper, the performance of the proposed system is analyzed in terms of beam losses distribution around the LHC ring and cleaning efficiency in stable physics condition at 7TeV for Beam1. Moreover, the energy deposition distribution on the machine elements is compared to the present LHC Betatron cleaning collimation system in the Point 7 Insertion Region (IR).
 
 
MOPPD078 Accelerator Physics Study on the Effects from an Asynchronous Beam Dump in the LHC Experimental Region Collimators 547
 
  • L. Lari, R.W. Assmann, V. Boccone, R. Bruce, F. Cerutti, A. Mereghetti, A. Rossi, V. Vlachoudis
    CERN, Geneva, Switzerland
  • A. Faus-Golfe, L. Lari
    IFIC, Valencia, Spain
 
  Funding: This work has been carried out through of the European Coordination for Accelerator Research and Development (EuCARD), co-sponsored by EU 7th Framework Program.
Asynchronous beam aborts at the LHC are to be expected once per year. Accelerator physics studies of asynchronous dumps have been performed at different beam energies and beta-stars. The loss patterns are analyzed in order to identify the losses in particular on the Phase 1 Tertiary Collimators (TCT), since their Tungsten jaw insert has a low damage threshold with respect to the loss load expected. Settings for the tilt angle of the TCTs are discussed with the aim of reducing the thermal loads on the TCT themselves.
 
 
WEPPD071 The FLUKA LineBuilder and Element DataBase: Tools for Building Complex Models of Accelerator Beam Lines 2687
 
  • A. Mereghetti
    UMAN, Manchester, United Kingdom
  • V. Boccone, F. Cerutti, R. Versaci, V. Vlachoudis
    CERN, Geneva, Switzerland
 
  Extended FLUKA models of accelerator beam lines can be extremely complex: heavy to manipulate, poorly versatile and prone to mismatched positioning. We developed a framework capable of creating the FLUKA model of an arbitrary portion of a given accelerator, starting from the optics configuration and a few other information provided by the user. The framework includes a builder (LineBuilder), an element database and a series of configuration and analysis scripts. The LineBuilder is a Python program aimed at dynamically assembling complex FLUKA models of accelerator beam lines: positions, magnetic fields and scorings are automatically set up, and geometry details such as apertures of collimators, tilting and misalignment of elements, beam pipes and tunnel geometries can be entered at user's will. The element database (FEDB) is a collection of detailed FLUKA geometry models of machine elements. This framework has been widely used for recent LHC and SPS beam-machine interaction studies at CERN, and led to a drastic reduction in the time otherwise required to rework old machine models, and to a coherent and traceable description of the inputs used for all the simulations.