Paper | Title | Page |
---|---|---|
THEPPB009 | The CRISP Project – Building Synergies between Research Infrastructures | 3248 |
|
||
Recently, the European Commission granted 12 M€ for a project aiming at the implementation of common solutions in infrastructures on the ESFRI* roadmap in the fields of physics, astronomy and analytical sciences. The objective of this initiative is to generate synergies in the development of components of interest for several infrastructures and thus promote efficiency and optimisation in the use of resources. The project, called "CRISP (Cluster of Research Infrastructures for Synergies in Physics) and started October 2011, gathers many major European large-scale infrastructures (CERN, XFEL, ESRF, ESS, FAIR, ILL, SKA, SLHC, SPIRAL-2, ELI, EuroFEL, ILC-Higrade etc). The generated synergies will be crucial to stimulate scientific and technological progress and to respond to the rapidly evolving user community. A brief overview of the different activities that are part of the project will be given, presenting the innovative approach of crossing boundaries between scientific disciplines and thus generating synergies.
*ESFRI stands for European Strategy Forum on Research Infrastructures |
||
TUOBB01 | A European Proposal for the Compton Gamma-ray Source of ELI-NP | 1086 |
|
||
A European proposal is under preparation for the Compton gamma-ray Source of ELI-NP. In the Romanian pillar of ELI (the European Extreme Light Infrastructure) an advanced gamma-ray beam is foreseen, coupled to two 10 PW laser systems. The photons will be generated by Compton back-scattering in the collision between a high quality electron beam and a high power laser. A European collaboration formed by INFN, Univ. of Roma La Sapienza, Orsay-LAL of IN2P3, Univ. de Paris Sud XI and ASTeC at Daresbury, is preparing a TDR exploring the feasibility of a machine expected to achieve the Gamma-ray beam specifications: energy tunable between 1 and 20 MeV, narrow bandwidth (0.3%) and high spectral density, 104 photons/sec/eV. We will describe the lay-out of the 720 MeV RF Linac and the collision laser with the associated optical cavity, as well as the optimized beam dynamics to achieve maximum phase space density at the collision, taking into account beam loading and beam break-up due to the acceleration of long bunch trains. The predicted gamma-ray spectra will be evaluated as the gamma photons collimators background. An option for electron bunches recirculation will also be illustrated. | ||
![]() |
Slides TUOBB01 [5.099 MB] | |