Author: Alekou, A.
Paper Title Page
MOEPPB003 Status of the PRISM FFAG Design for the Next Generation Muon-to-Electron Conversion Experiment 79
 
  • J. Pasternak, A. Alekou, M. Aslaninejad, R. Chudzinski, L.J. Jenner, A. Kurup, Y. Shi, Y. Uchida
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • R. Appleby, H.L. Owen
    UMAN, Manchester, United Kingdom
  • R.J. Barlow
    University of Huddersfield, Huddersfield, United Kingdom
  • K.M. Hock, B.D. Muratori
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • D.J. Kelliher, S. Machida, C.R. Prior
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
  • Y. Kuno, A. Sato
    Osaka University, Osaka, Japan
  • J.-B. Lagrange, Y. Mori
    Kyoto University, Research Reactor Institute, Osaka, Japan
  • M. Lancaster
    UCL, London, United Kingdom
  • C. Ohmori
    KEK, Tokai, Ibaraki, Japan
  • T. Planche
    TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics, Vancouver, Canada
  • S.L. Smith
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • H. Witte
    BNL, Upton, Long Island, New York, USA
  • T. Yokoi
    JAI, Oxford, United Kingdom
 
  The PRISM Task Force continues to study high intensity and high quality muon beams needed for next generation lepton flavor violation experiments. In the PRISM case such beams have been proposed to be produced by sending a short proton pulse to a pion production target, capturing the pions and performing RF phase rotation on the resulting muon beam in an FFAG ring. This paper summarizes the current status of the PRISM design obtained by the Task Force. In particular various designs for the PRISM FFAG ring are discussed and their performance compared to the baseline one, the injection/extraction systems and matching to the solenoid channels upstream and downstream of the FFAG ring are presented. The feasibility of the construction of the PRISM system is discussed.  
 
TUPPD003 Optimisation of Cooling Lattice Based on Bucked Coils for the Neutrino Factory 1407
 
  • A. Alekou, J. Pasternak
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
 
  The ionisation cooling technique will be used at the Neutrino Factory to reduce the transverse phase space of the muon beam. For efficient cooling, high average RF gradient and strong focusing are required to be applied in the cooling channel. However, high magnetic field at the position of the RF cavities induces electric field breakdown and therefore, a novel configuration, the Bucked Coils lattice, has been proposed to mitigate this problem. The Bucked Coils lattice has significantly lower magnetic field in the RF cavities by using coils of different radius and opposite polarity. This paper presents the optimisation of this lattice, its cooling performance, together with the preliminary conceptual engineering design.  
 
TUPPD006 IDR Neutrino Factory Front End and Variations 1416
 
  • D.V. Neuffer
    Fermilab, Batavia, USA
  • A. Alekou
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • C.T. Rogers
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
  • P. Snopok
    IIT, Chicago, Illinois, USA
  • C. Y. Yoshikawa
    Muons, Inc, Batavia, USA
 
  The (International Design Report) IDR neutrino factory scenario for capture, bunching, phase-energy rotation and initial cooling of muons produced from a proton source target is presented. It requires a drift section from the target, a bunching section and a phase-energy rotation section leading into the cooling channel. The rf frequency changes along the bunching and rotation transport in order to form the muons into a train of equal-energy bunches suitable for cooling and acceleration. This design is being explored within the IDR cost model. Important concerns are rf limitations and beam losses. Recent experiments on rf gradient limits suggest preferred configurations for the rf within the magnetic fields, and these considerations are incorporated into the front end design.