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E-CLOUD MAP FORMALISM: AN ANALYTICAL EXPRESSION FOR
QUADRATIC COEFFICIENT

T. Demma, INFN-LNF, Frascati (Italy),

Abstrac

The evolution of the electron density during electron
cloud formation can be reproduced using a bunch-to-bunch
iterative map formalism. The reliability of this formal-
ism has been proved for RHIC [1] and LHC [2]. The
linear coefficient has a good theoretical framework, while
quadratic coefficient has been proved only by fitting the re-
sults of compute-intensive electron cloud simulations. In
this communication we derive an analytic expression for
the quadratic map coefficient. The comparison of the the-
oretical estimate with the simulations results shows a good
agreement for awide range of bunch population.

INTRODUCTION

In[1] it has been shown that, the evol ution of the electron
cloud density can bedescribed introducing a quadratic map
of the form:

Nmt1 = ANy + B1nm? (€N}

where n,,, + 1 and n,,, are the average densities of elec-
trons between two successive bunches. The coefficients «
and 3 are extrapolated from simulations and are functions
of the beam parameters and of the beam pipe characteris-
tics. An analytic expression for the linear map coefficient
that describes electron cloud behavior from first principles
has been derived for straight sections of RHIC [3]. In this
paper we find an analytical expression the quadratic term
coefficient. We consider N, ,,, quasi-stationary electrons
gaussian-like distributed in the transverse cross-section of
the beam pipe. The bunch m + 1 accelerates the N,
electrons initially at rest to an energy £,. After the first
electrons- wall collision two new jets are created: the
backscattered electrons with energy £, and the "true sec-
ondaries’ (withenergy &g ~ 5eV).

The sum of thesejets givesthe number of surviving elec-
trons Ne¢; 1, then one gets the linear coefficient

Nel m—+1
= =T 2
“ Nel,m ( )

In the next section we compute the quadratic term coeffi-
cient 8 when the saturation condition of the electron cloud
is obtained . Once calculated saturation we pass to esti-
mate theoretically the coefficient 5. We compare our re-
sults with the outcomes of numerical simulations obtained
using ECLOUD [4]. Inthe Table 1 wereport all parameters
used for our calculations.
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Table 1. Input parameters for analytical estimate and

ECLOUD simulations.
Parameter Unit  Vaue
Beam piperadiusb m .045
Beamsizea m .002
Bunch spacing sy, m 1.2
Bunch length i m .013
Energy for 6 maz 0,maz ev 300
Energy width for secondary e ~ eV -
Number of particles per bunch N, 1019 4 +9
Secondary emission yield (max) 0 yax - 1.7
Secondary emission yield (€ — 0) - 5

STEADY-STATE: ELECTRONIC DENSITY
OF SATURATION

In the chamber we have two groups of electrons belong-
ing to cloud: primary photo-electronsgenerated by the syn-
chrotron radiation photons and secondary €lectrons gener-
ated by the beam induced multi-pactoring. Electronsin the
first group generated at the beam pipe wall interact with the
parent bunch and are accelerated to the velocity given by:
v/c = 2Nyr./b, where r. is the classical electron radius
and NN, is the effective value of bunch population and

. h
N =
b h+ sp

Ny ©)

sy ibeing the bunch spacing and & the length of bunch.
Electrons in the second group, generaly, miss the parent
bunch and move from the beam pipe wall with the veloc-
ity given by: v/c = +/2&/mc2, & being the average
energy of the secondary electrons, until the next bunch ar-
rives. The process of thecloud formation depends, respec-
tively, on two parameters:

2Nbreh
k = 02

N
= Wme ©

The second one is the distance (in units of b) passed by
electrons of each group before the next bunch arrives. At
low currents, & << 1, each electron interacts with many
bunches before it reaches the opposite wall. In the oppo-
Site extreme case, £ > 2, al electrons go wall to wall in
one bunch spacing. The transition to the second regime
occurswhen k ~ 1. The density of the secondary elec-
trons grows until the space-charge potential energy of the
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secondary electronsis lower than £,. The saturation condi-
tion can be obtained by requiring that the potential barrier
is greater than electron energy inthepoint /b = 1 — ¢

—eV(1-¢ ~ & (6)

where V' is the electric potential generated by the bunch
and the electron cloud. To calculate the electric potential
we assume that our system is composed by a chamber with
radius b, a bunch with radius a and length h, an electron
cloud with density p. We consider the following electron
distribution:

(r—mo)?

202 (7)

p(r) = poe

where py is fixed by the condition

b
2ﬂ'h/ p(r)yrdr = —Ng e (8)

and N, is the total number of electrons in the volume
7h(b? — a?). The eectric potential V(r), defined by the
conditionV(b) = 0is:

Vir)y=-W% [glnz + %} , 9

where F(z) = [ exp(—(§ — 70)?/26°)ydy, G(z) =
jml F(y)/ydy, g = Ny/Ne, Vo = Nge/2meoh and
x = r/b,a = a/b, 79 = r9/b, & = o/b. We note
thatif o >> b(oré >> 1)andry = 0 we obtain the
uniform electron cloud and with a — 0 we must neglect
the radial dimension of bunch with respect to that one of
electron cloud. In this case equation (9) gives

1—a?
)
Obvioudly the potentials depend on g, theratio of the den-
sities of the beam and of the cloud averaged over the beam
pipe cross-section. In FIG. 1 we report the spatial behav-
ior of two potentials. The potentia (10) has minimum at
r = r,m = by/g andismonotonicfor g > 1 withinthe
beam pipe. For ¢ < 1 it has minimum at the distance
rm < b, and the condition ¢ = 1 defines the maximum
density. thisisthe well known condition of the neutrality.
The condition formulated in thisform s, actually, indepen-
dent of the form of distribution. Similar behavior is found
also for the gaussian distribution density and is compared
with respect to previousone (FIG. 1). By imposing the con-
dition (6) wefind the critical number (saturation condition)
of electronsin the chamber
2reghF (1)  F(1)In(l —¢) -
Y = CaEG-g Gu-9
while the average density of saturation is found by assum-
ing that electrons are confined in a cylindrical shell with

Vir) = =W [glnz + (10)

11)
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Figure 1: Plot of V; 'V (), (9) and (10)), in the case of

uniform (solid lines) and gaussian (dashed lines) electronic
distributionforg = 0 ~ 2,a = .04,7y = 0,6 = .3.

inner radius a and external radiusr + p o wherep isafree
parameter. So

Nel,sat
Thi[(7o + p&)? — @)

Ngat = (12)
where p is a free parameter. For a uniform electron cloud
distribution we find the saturation density

Nel,sat

B[ — &) 13

Nsat =
In the FIG. 2 we show the behavior of saturation density
(12) and (13). It is obvious for a gaussian distribution we
get a estimate of density saturation greater than that of a
uniform distribution. In fact, the same number of electrons
occupies a smaller volume (due to the Gaussian distribu-
tion).

107N,

Figure 2: Plot of electronic densities of saturation n s, VS
Ny, (12) and (13)), withf uniform (solid line) and gaussian
(dashed lines) electronic distribution for a = 0.04, 7o =
0,6 = 03andp = 2 + 3.

ANALYTICAL DETERMINATION OF
COEFFICIENTS

The coefficient 5 can be found by imposing the satura-
tion condition of map (1):

l—«

Ngsat = ANsat +anat2 — 6 = (14)

Nsat
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and the map (1) becomes

Lo, 2 (15)

Nip41 = ANy +
Nsat
InFig. (3), (4) we show the trends of the coefficient (14) as
afunction of §,,,,, for various values of bunch population
and viceversa.
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Figure 3: Analytical prediction of coefficient 5 (14) for
valuesd, g, = 1.4+2andp = 2.
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Figure 4: Analytical prediction of coefficient 5 (14) for
valuesN, = 4+-9andp = 2.
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Figure 5: Comparison of the quadratic coefficient 5 (Eq.
(14)) derived using ECLOUD simulations (points) and us-
ing the analysis of previous sections (dashed lines) with
p = 2 + 3. The solid line is the result by assuming an
uniform density.

RESULTS AND CONCLUSIONS

In Figs. 5 the analytical behavior and the outcomes of
simulations (ECLOUD code) of 3 coefficient using the pa-
rametersreportedin Table 1 show an acceptabl e agreement.
Asafuturework the analytical result could be useful to de-
termine safe regionsin parameter space where to minimize
the electron clouds. Furthermore we would extend our re-
sults to include the presence of a magnetic field.
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