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Abstract

NSLS-II is a third-generation light source that is being
built at the Brookhaven National Laboratory. The storage
ring has 30 double-bend-achromatic cells. Six 3.5-m-long
damping wigglers (DW) will be installed in three straight
section to lower the emittance. The civil construction of the
facility started in June 2009 and major accelerator compo-
nents, such as magnets and vacuum chambers, have entered
production phase. This paper will summarize the physics
considerations for the NSLS-II magnet specifications. In
particular, we discuss the tuning range required by the lat-
tice flexibility, and the issues which lead to the specification
for the higher-order multipoles.

THE NSLS-II LATTICE AND
PARAMETERS

The basic module of the NSLS-II lattice is a standard
double-bend-achromatic (DBA) lattice. As shown in Fig.
1 there are three quadrupoles in each of the two matching
sections, and two quadrupole doublets in the arc section.
There are three sextupole families on each of the three mul-
tipole girders, which amounts to nine totally. Some main
parameters of NSLS-II are listed in Tab. 1.

Figure 1: One cell of the NSLS-II DBA lattice. The
quadrupole magnets in order are named as: Long straight,
QH1, QH2, QH3, QM1, QM2, QM2, QM1, QL3, QL2,
QL1, short straight.

LATTICE FLEXIBILITY AND
QUADRUPOLE TUNING RANGE

The magnet tuning range is determined from the tune
search. It is well known that the betatron phase advances
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Table 1: NSLS-II main parameters

Energy (GeV) 3
Circumference (m) 792
Emittance εx/εy (nm/pm) 1/8
Chromaticity per cell (x/y) -3.2/-1.4
Momentum compaction 3.6 ×10−4

Energy loss 0/6 DWs (MeV) 0.0191/ 0.225
Momentum spread 0/6 DWs (×10−4) 5.1 / 8.3
Longitudinal damping time 0/6 DWs (ms) 27.7 / 11.8
Harmonic number 1320
RF frequency (MHz) 500
Total current (mA) 500

of a Chasman-Green cell are approximately 2π in the hor-
izontal direction and π in the vertical plane. There are 30
cells in our lattice; therefore, we expect the integer part of
the tunes to be not far from 30 (H) and 15 (V). The tunes
of the present working point are (33.148,16.27). The tunes
are on the larger side because the beta functions are fo-
cused to small values in the short straight. It would be nice
to consider solutions in big ranges; however, we found that
if we want to keep small emittance and small βx (∼3m)
in the short straight, the horizontal tune can not be low-
ered too much. The vertical tune has more flexibility on
the lower side. On the upper side both tunes are limited
by chromaticity. The chromaticity becomes much greater
at larger tunes, which makes the nonlinear optimization and
dynamic aperture search difficult. Based on these consider-
ations, we have decided to define the tuning range to be ±1
units from (33,16). We search for a grid of working points
in this tune window. As for the number of points on the
grid, we found that the tunes can be varied continuously in
a small region and the dynamic aperture is not very sensi-
tive to small tune changes. Consequently we have decided
it is adequate to separate the working point by 0.2 units on
the grid. And we can always zoom-in on an interesting area
if more points are needed. The following constraints are

Figure 2: The solutions on a grid of working points.

applied when the lattice is tuned to the other work points:
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the natural emittance εx ∼ 2 nm, the natual chromaticities
|ξx| < 3.7 and |ξy| <1.8 per DBA, the strict achromatic
condition, i.e., the dispersion must be zero in both of the
straight sections. The beta functions in the long straight are
constrained to βx ∼ 20 m, βy ∼ 3.5 m, and in the short
straight βx <3 m, βy ∼ 1 m. And symmetry conditions
are kept at the center of the straights and at the arc cen-
ter between the two dipole magnets. Note that some of the
constraints are degenerate. For example, if symmetry con-
dition is imposed at the arc center, then dispersion needs to
be constrained only at one exit of the dipole because of the
symmetric layout of the quadrupoles. The tunes of the grid
of good solutions are shown in Fig. 2.

While working out solutions on the grid, we constrained
the beta functions at the straights. However, in some cases
different beta functions are desired. In the long straights
large βx is required for injection; however, smaller values
are probably preferred if an undulator is put in the long
straight. Beta functions in the short straight might be ad-
justed due to particular requirements from the users, too.
Based on these considerations, we have found solutions
with different beta functions in straights. Fig. 3 shows
solutions with βx = 13 and 8 m, and βy is varied from 1
to 5 m. The tuning range of the quadrupoles can be de-

Figure 3: The variation of the beta functions (upper: βx,
lower: βy) in the straights. The black curves are for the
present values.

duced from these solutions. The statistics of the K1 val-
ues are shown in Tab. 2. We note that the lengths of the
quadrupoles have been adjusted recently; however, the in-
tegrated strength is kept the same. We found that lowering
βx in the long straight changes the tuning range of QH1 and
QH2 significantly. On the other hand, the matching of the
insertion devices needs only a small change (ΔK1 < 0.1);
therefore, the listed tuning ranges should cover the required
strength change for ID matching.

The tuning ranges for the sextupoles cannot be deter-
mined as precisely. The nonlinear solution is usually not
unique for a given linear lattice. The tuning range for the
three chromatic sextupoles can be deduced from the lin-

Table 2: The tuning range of the quadrupoles. Units: 1/m 2

unless specified.

Magnet L (m) Nominal Min. Max. σ
QH1 0.25 -0.5095 0.4000 1.7792 0.1689
QH2 0.4 1.5525 1.4755 2.0047 0.0761
QH3 0.25 -1.8238 1.4069 1.9410 0.0636
QL1 0.25 -1.8366 0.7429 2.2000 0.3219
QL2 0.4 2.0079 1.8095 2.0458 0.0447
QL3 0.25 -1.5118 1.2102 1.7561 0.1355
QM1 0.25 -0.8553 0.7295 1.0843 0.0586
QM2 0.25 1.3973 1.3571 1.4661 0.0183

ear and second-order chromaticity correction. For them the
maximum strength is set to K2,max=40, which is a conser-
vative number compared to the maximum of ∼30 needed
for the solutions shown in Fig. 2. Next we found that the
maximum strength of the harmonic sextupoles could be set
to a value similar to the chromatic sextupole setting. This is
understandable because we do not want to introduce extra
nonlinearity. We set K2,max=40 for all the sextupoles and
optimized all the solutions on the grid. So far the optimiza-
tion is not limited by the maximum strength.

MULTIPOLE EFFECTS AND FIELD
QUALITY

The magnet field quality can be characterized by the
higher-order multipoles. We define the relative multipole
coefficient as B(m)

n+1 = bn/bm, where bn = 1
n!

∂nBy

∂xn rn is
the 2(n + 1)-pole field strength at radius r. m = 1, 2 for
the main quadrupole and sextupole field, respectively.

To understand the effect of the multipole errors on the
beam dynamics, we take the 20-pole systematic component
as an example. The Hamiltonian can be written as: H10 =

− 1
Bρ

1
10!

∂9By

∂x9 (x10−45x8y2+· · ·), whereBρ is the rigidity
of the beam, By is the vertical component of the magnetic
field, and x = xc.o. + xβ , where xc.o. denotes the hori-
zontal closed orbit, and xβ =

√
2βxJxcosψ is the betatron

oscillation amplitude. Because x � y, the Hamiltonian
is dominated by the first term. And the tune change due

to this term is ν10 = 1
2π

∂
∂Jx

〈H10〉 = − 1
2π

1
Bρ

1
10!

∂9By

∂x9 ×
∑5

k=1 kC
2k
10x

10−2k
c.o. (2βx)

k〈cos2k ψ〉Jk−1
x .

Therefore the detuning effect is related to the powers of
the closed orbit xc.o. and the horizontal beta function βx.
Bearing in mind that xc.o. is related to dispersion, one can
conclude that higher-order multipoles at large dispersion
would introduce large momentum dependence of the hori-
zontal tune-shift with amplitude.

Fig. 4 shows the off-momentum βx and xc.o. for a typi-
cal DBA cell. We notice that the closed orbit offset for the
off-momentum particles reaches a maximum at the center
of the DBA due to linear dispersion. The absolute displace-
ment is much bigger at δ = −2.5% than at δ = 2.5%. This
is mostly due to the second-order dispersion being nega-
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tive. The beta function for δ = −2.5% is also bigger than it
is for the on-momentum and positive momentum particles
at the center of the arc. With greater closed orbit and beta
function, we expect the detuning effect is larger at negative
momentum.

Figure 4: βx and xc.o. for a DBA cell at δ = −2.5 (black),0
(red) ,2.5% (blue).

Based on the understanding of the multipole effects,
we decided to give tighter specifications for the magnets
at maximum dispersion. The apertures for the normal
quadrupole and sextupole magnets are 66 and 68 mm, re-
spectively. The magnets at the maximum dispersion are
designed to have apertures of 90 and 76 mm, respec-
tively. Tab. 3 lists the specifications for the symmetry-
allowed multipoles. The unallowed multipoles are in gen-
eral smaller than the allowed terms. For a complete list of
the harmonics one can refer to the NSLS-II design docu-
ments [1].

Table 3: The specifications for the allowed multipoles.
Units: ×10−4, reference radius r=25 mm.

Quad. 66mm 90 mm Sext. 68 mm 76 mm
B6 1 0.5 B9 1.0 0.5
B10 3 0.5 B15 0.5 0.5
B14 2 0.1 B21 0.5 0.5

Fig. 5 shows tune versus oscillation amplitude for the
lattice at δ = −2.5% with ideal magnets (black) and with
field errors (red). The difference is apparent. The dynamic
aperture is directly affected by this change. The particle
motion is stable, until the tune reaches a resonance line as
it varies with the oscillating amplitude. At δ = −2.5% the
dynamic aperture is partly bounded by the resonance line
9νx = 300. In Fig. 5, one sees that the tune reaches the
resonance line at much smaller amplitude when the errors
are included. This detuning effect is less at δ = 0 and
2.5%. Fig. 6 is a comparison of the frequency maps with
ideal magnets and with the specified multipole errors. The
dynamic aperture at negative momentum is smaller with

Figure 5: The ring tune changes with amplitude at δ =
−2.5%. Black diamonds: lattice with ideal magnets; red
crosses: lattice with enlarged multipole errors.

Figure 6: Frequency map comparison between the lattices
with ideal magnets (upper plot) and with systematic field
errors from Tab. 3 (lower plot).

errors, but it is still adequate for the required 2.5% momen-
tum aperture.

SUMMARY

We have presented the physics considerations for the
NSLS-II magnets. The quadrupole tuning range is deduced
from the variation of working point and beta functions in
the straights. The magnetic multipoles increase the ampli-
tude tune dependence prominent at negative momentum.
For NSLS-II tighter multipole specifications were given for
the magnets at the maximum dispersion.
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