
ADVANCES WITH MERLIN - A BEAM TRACKING CODE

J. Molson, H. Owen, A. M. Toader, R. J. Barlow
Manchester University, UK and the Cockcroft Institute, UK

Abstract

MERLIN is a highly abstracted particle tracking code
written in C++ that provides many unique features, and is
simple to extend and modify. We have investigated the ad-
dition of high order wakefields to this tracking code and
their effects on bunches, particularly with regard to col-
limation systems for both hadron and lepton accelerators.
Updates have also been made to increase the code base
compatibility with current compilers, and speed enhance-
ments have been made to the code via the addition of multi-
threading to allow cluster operation on the grid. The devel-
opments allow for simulations with large numbers of par-
ticles to take place. Instructions for downloading the new
code base are given.

INTRODUCTION

Merlin is a beam tracking code developed in C++ by N.
Walker et al. [1, 2]. It is easy to extend due to its mod-
ular process nature, and the code is clean structured C++.
Merlin exists as a set of library functions, where one writes
one’s own simulation program and makes use of this pro-
vided simulation system. This provides great flexibility in
what the code can do, as demonstrated in the example files
available in the Merlin distribution. We have taken respon-
sibility for developing and maintaining the code, and have
added several new features and enhancements.

CODE IMPROVEMENTS

Many improvements have been made to the Merlin code
base. We have implemented proton scattering in collima-
tion systems, enhanced the resistive wakefield processes,
and have given the code base a major speed increase. In
addition many pure code alterations have been made. We
have brought the code base up to date to be compatible with
current compilers, and now use a modern version control
system (SourceForge) to host the code and track changes.

Scattering Physics

Scattering physics for protons has been added to the
code. These scattering processes include: multiple
coulomb, elastic proton-nucleus, inelastic proton-nucleus,
elastic proton-nucleon, quasi-elastic single diffractive
proton-nucleon, and Rutherford scattering. Enhancements
to the proton scattering physics in collimators are discussed
in detail in a separate paper [3].

Resistive Wakefield Enhancements

Previous versions of Merlin assumed a fixed charge for
each macroparticle in the bunch [4]. We have added a new
ParticleBunchQ class, which allows each macroparticle to
have its own charge. This allows us to simulate core beam
particles with a large charge with a halo of lower-charge
particles. This will give a more accurate simulation of the
effect of wakefields on halo particles, with the core beam
charge producing the field that acts on the halo. In addition,
the WakefieldProcess has been enhanced to work with MPI
(see below), allowing transfers from other compute nodes.
The collective wakefield from multiple systems is calcu-
lated, and the macrparticles on each node are updated.

Minor Changes

Collimator apertures had previously to be added to the
Merlin input files (MAD XSIF format) by hand. These are
now read instead from a user-defined collimator database
file, allowing easy changes to collimator settings. There is
also now a unified material class and a material database
class: here materials objects are created, are filled with the
relevant material properties and are then pushed back onto
a C++ vector for easy access and searching. Since the ma-
terial data does not change between runs this information
is held within the source code itself, instead of in an exter-
nal configuration file; given the correct material properties
and cross sections, it is now trivial to add new materials to
Merlin.

We have implemented bunch load functions, allowing
checkpoint features for long simulation runs, where the
bunch must be saved and reloaded at a later time in the
same state. We have tested the code base with gcc 4.5
builds to ensure compatibility with current compilers, and
have eliminated many outstanding code warnings. Many
minor code design and layout enhancements have also been
made, and copious code comments added.

Symplectic Tracking

Since the code was initially developed for single pass
linacs, symplecticity was not previously a design concern.
However, for large multi-turn hadron machines such as
the LHC it can become an issue; tests on an LHC lattice
(V6.503 design optics) show that there is a small drift in
emittance size over several million turns. A set of sym-
plectic integrators have been developed for Merlin by A.
Wolski [5], and will be implemented in the next release of
Merlin.

Proceedings of IPAC’10, Kyoto, Japan TUPEC057

05 Beam Dynamics and Electromagnetic Fields

D06 Code Developments and Simulation Techniques 1853



INCREASING TRACKING SPEED

Improving tracking statistics is CPU-intensive. We have
explored several methods to parallelise the computation, as
described below.

GPUs: OpenCL and CUDA

The advent of high performance GPUs with hundreds
of processors has reduced the cost of many highly paral-
lel tasks (such as particle beam tracking), but to date only
single-precision arithmetic is efficient. This problem is to
be somewhat rectified with the new generation of Fermi
processors from NVidia, where the double precision per-
formance is up to 50% that of single precision. Other
beam tracking codes have been implemented using single-
precision GPUs, and have been shown give significant de-
viations compared to double-precision codes [6]. For col-
limation studies this difference is important, although our
group has previously implemented a GPU-based tracking
code based on NVidia’s CUDA [7, 8, 9].

There are now several different APIs for GPU program-
ming, most of which are vendor-dependent, such as CUDA.
A general-purpose GPU API has been created: OpenCL
(Open Compute Language) [10]: this will allow a com-
pute ”kernel” to be written once, and executed on any avail-
able compute element on a system, be that a CPU or GPU.
OpenCL is not yet sufficiently mature, but with the advent
of such a language and high speed double precision GPUs,
there is the possibility of creating beam tracking integrators
that can run on any GPU. For now, more standard compute
methods have been used.

OpenMP

When using one physical machine, a common multi-
threading technique is to use OpenMP. This is achieved via
the addition of a #pragma definition in the source code.
For the transport code, a map is applied to each particle in
turn. This loop can be parallelized:

#pragma omp parallel for

for(size_t i = 0; i<bunch.size(); i++)

{

amap->Apply(bunch.GetParticles()[i]);

}

The compiler itself (gcc 4.3 for this work) will handle all
parallelisation work, making this a trivial method to gain
a considerable speed increase. The same method can be
applied to other processes, such as collimation.

Using Computing Grids - MPI

For a further increase in speed, one can use multiple
physical machines. The industry-standard communication
method is Message Passing Interface (MPI).

We have implemented particle distribution routines into
Merlin in order to split tracking over multiple computers.

Table 1: Scaling of OpenMP-enabled MERLIN with 10
laps of an LHC lattice, and 100k particles. Wakefields are
enabled.

No. of Processor Cores Time (seconds)
1 1067
2 738
3 632
4 569

Our first design decision was to only exchange particles
where required. All tracking, collimation, and other inde-
pendent processes will take place on individual CPU nodes,
with particle exchange taking place for collective effects
only. These include processes such as initial bunch cre-
ation, wakefield effects, emittance calculations, and space
charge effects (not yet implemented in Merlin).

Node 1
Node 2

Node n-1 
Node n

Master

Node 1
Node 2

Node n-1 
Node n

Master MPI::Finalize()MPI::Init()
Creation

Linear

Collective

Bunch

Tracking

effects

Linear
Tracking

Figure 1: Illustrating of code branching in the MPI version
of Merlin.

This does mean the limiting issue for any speed increases
are any single-threaded collective effect algorithms.

MPI code is placed where required within existing Mer-
lin functions, and a compile time define ENABLE MPI al-
lows selection of the different tracking methods. A new
MPI datatype was created for transfer of particles; this
is defined as MPI PARTICLE. This is implemented as a
structure, allowing the addition of extra types: currently it
consists of 6 doubles for the 6d phase space coordinates (7
including the per-particle macrocharge). Addition of non-
double types such as the particle type (electron, proton, etc)
is possible due to this formalism. MPI send and receives
require a continual block of memory to act as a buffer for
transfers. The particle bunches in Merlin are C++ vector
types, hence to be transferred, they must be first copied par-
ticle by particle into a suitable buffer array. They are then
sent, and the receive buffer array is converted into a PSVec-
tor type (a single particle), which is then pushed back onto
a ParticleBunch vector one by one.

When running on shared computing systems such as the
grid (where there is no guarantee that the code has exclu-
sive usage over the CPUs available) we found that exe-
cution was frequently held up waiting for calculations on
a busy node to complete. To work around this problem,
we implemented a load balancing system, where the time
per particle on each node is measured between collective
effects, and when particles are redistributed, this is done

TUPEC057 Proceedings of IPAC’10, Kyoto, Japan

1854

05 Beam Dynamics and Electromagnetic Fields

D06 Code Developments and Simulation Techniques



Number of CPU cores

E
x
e
c
u
ti
o
n
ti
m
e
(s
e
c
o
n
d
s
)

Figure 2: Variation of execution time for a test LHC track-
ing run versus number of CPU cores in the MPI version of
Merlin.

according to the load on each CPU, with more heavily
loaded CPUs receiving fewer particles. This also allowed
increased performance on heterogeneous clusters, where
the particles would be distributed according to individual
CPU speed.

We have tested the scalability of the MPI code, and have
found a limit corresponding to 60 processors as shown in
Fig. 2. This is due to the remaining single threaded wake-
field code, and the initial accelerator lattice loading.

When benchmarking the new MPI code base against the
old, we found a small divergence in tracking results. We
believe that the difference is that in the single-threaded ver-
sion variables are implicitly held at 80bit due to the x87
FPU enhanced precision. In the MPI code, particles are
transported between physical machines as doubles, hence
an implicit precision truncation occurs. Differences can be
avoided by forcing the x87 FPU to operate in 64bit preci-
sion mode, via the use of the fldcw assembly instruction
(FPU load control word). We point out this difference to
others considering using MPI as a solution. One can also
use long doubles throughout, but these will result in in-
creased computational time.

ACCESS AND DISTRIBUTION

The current release of the source code is available from
SourceForge [11], and we actively encourage new develop-
ers to join the Merlin project. As part of our development
efforts, we have switched to the git distributed version con-
trol system; this allows individual developers to make their
own branches and track their own changes without modi-
fying the main source tree.

FUTURE WORK

We intend to implement the symplectic integrators into
Merlin and verify their precision. Lepton scattering will be
fully implemented for future linac and light source stud-
ies. Scattering will be moved to be a function of a particle
bunch, such that we can create arbitrary bunches of pro-
tons, electrons, muons, etc. We also plan to implement the
effects of long range inter-bunch wakefields, on top of the
short range intra-bunch resistive wakefields. The wakefield
code is still the limiting factor in the speed of tracking, and
enhancements can be made via attempting to parallelise
the bunch slicing and kick calculations. General speed in-
creases can also be found in the MPI code via increased use
of non-blocking send and receive calls.

CONCLUSIONS

In conclusion, we have added new physics effects such
as proton scattering in collimators, enhanced wakefield ef-
fects, and parallel tracking. Merlin is currently under active
development and we welcome new developers.

ACKNOWLEDGEMENTS

We would like to thank Nick Walker and Andy Wolski
for their huge efforts in the earlier versions of Merlin. Also,
we thank CSED staff at STFC Daresbury Laboratory for
providing computational resources.

REFERENCES

[1] http://www.desy.de/∼merlin/

[2] D. Kruecker, F. Poirier, N. Walker. Merlin-based start-to-end
simulations of luminosity stability for the ILC. PAC2007.

[3] A.Toader et al. Simulations of the LHC collimation system
(These proceedings).

[4] A. Toader and R. Barlow, Computation of Resistive Wake-
fields. PAC2009.

[5] A. Wolski. Private communication.

[6] G. Sterbini. An early separation Scheme for the LHC Lumi-
nosity Upgrade. PhD Thesis.

[7] ’High performance stream computing for particle beam trans-
port simulations’, R.B. Appleby et al, 2008 J. Phys.: Conf.
Ser. 119 042001 (10pp)

[8] ’Beam dynamics using the stream processing code GPMAD’,
Appleby, Bailey and Salt, EuroTeV report 2008-022.

[9] http://developer.nvidia.com/object/gpucomputing.html

[10] http://www.khronos.org/opencl/

[11] http://sourceforge.net/projects/merlin-pt/

Proceedings of IPAC’10, Kyoto, Japan TUPEC057

05 Beam Dynamics and Electromagnetic Fields

D06 Code Developments and Simulation Techniques 1855


