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Abstract

Precise and fast 3D space-charge calculations for
bunches of charged particles are still of growing impor-
tance in recent accelerator designs. A widespread approach
is the particle-mesh method computing the potential of a
bunch in the rest frame by means of Poisson’s equation.

An adaptive discretization following the particle density
distribution is implemented in the GPT tracking code to-
gether with a multigrid Poisson solver. The disadvantage
of this approach is that the adaptivity is not achieved by a
scheme that directly ’fits’ into the multigrid algorithm.

In this paper we investigate a new approach to an adap-
tive discretization: the self-adaptive multigrid algorithm.
The goal is that the adaptive mesh is constructed hierar-
chically, where the distribution of mesh lines is calculated
by an error estimator. The algorithm will be investigated
for ellipsoidal particle distributions of different lengths and
compared to the adaptive GPT mesh. Furthermore, the
performance of both adaptive discretization schemes will
be tested with simulations for the rf gun of the European
XFEL.

INTRODUCTION

The simulation of the dynamics of high-brightness
charged particle bunches demand the fast calculation of
3D non-linear space charge fields with an accuracy that
matches the quality of the bunch. The particle-mesh
method is a widespread model for space charge calcula-
tions. Here, adaptive discretization techniques are often
required in order to satisfy both computational demands:
accuracy and fast performance. Nevertheless, adaptive
discretizations are implemented only in a few software
packages together with space charge calculations. For in-
stance, the FFT Poisson solver that is often applied allows
only an equidistant mesh. The GPT code (General Par-
ticle Tracer) sets the mesh lines dynamically based on the
charge density [1], a substantial improvement over equidis-
tant meshes. The Poisson solver MOEVE (Multigrid for
non-equidistant grids to solve Poisson’s equation) is an ef-
ficient implementation that adapts multigrid for such non-
equidistant meshes [2].

In this paper we aim to set the next step in optimizing
the grid creation process for our multigrid Poisson solver
MOEVE. We here propose to use the multigrid procedure
itself to assign the optimal mesh line positions. This self-
adaptive multigrid method was firstly described and inves-
tigated for space charge calculations in [3]. Recently this
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approach has been implemented in the tracking code GPT.
With numerical test cases we compare these two adaptive
discretization schemes: the adaptive GPT mesh and the
self-adaptive multigrid algorithm. The numerical error and
CPU time are investigated for ellipsoidal particle bunches
of different lengths. Finally, the performance of both adap-
tive discretizations is tested with simulations for the rf gun
of the European XFEL.

PARTICLE-MESH MODEL IN GPT

In the tracking code GPT several space charge models
are implemented [1]. The 3D model we consider here is
based on the particle-mesh method (see [4] and citations
therein). Hereby the bunch is modelled as a certain distri-
bution of macro particles. All fields are calculated in the
electrostatic approximation in the rest frame of the bunch,
implicitly assuming only a few percent energy spread. Af-
ter the transformation into the rest frame a mesh is con-
structed around the bunch and the charge of the particles is
assigned to the mesh points. Now, the potential ϕ can be
obtained from Poisson’s equation given by

−Δϕ =
�

ε0
in Ω ⊂ R

3,

ϕ = 0 on ∂Ω1,
∂ϕ

∂n
+

1

r
ϕ = 0 on ∂Ω2,

(1)

where � the space charge distribution, ε0 the dielectric con-
stant and r the distance between the centre of the bunch
and the boundary. Usually, the domain Ω is a rectan-
gular box constructed around the bunch. On the surface
∂Ω = ∂Ω1 ∪ ∂Ω2 (∂Ω1 ∩ ∂Ω2 = ∅) perfectly conducting
boundaries (∂Ω1) or open boundaries (∂Ω2) can be applied.

For the solution of the Poisson equation we applied the
discretization with second order finite differences. This
leads to a linear system of equations of the form

Lhuh = fh, (2)

where uh denotes the vector of the unknown values of the
potential and fh the vector of the given space charge den-
sity at the grid points. The step size h indicates a certain
refinement level and the operator Lh is the discretization of
the Laplacian.

ADAPTIVE MESHING

The Adaptive GPT Mesh

The adaptive GPT mesh (first in release 2.7) is an adap-
tive discretization that sets the mesh lines dynamically due
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to the charge density in the bunch [1]. The number of mesh
lines is chosen accordingly to the number and the distri-
bution of the particles, respectively. Efficient space charge
calculations can be performed with the MOEVE Poisson
solver that has been constructed especially for such non-
equidistant meshes. The adaptive GPT mesh is very reli-
able but the construction is very complex. For example it
has to be ensured that neighboring step sizes are differ not
more than a certain factor in order to ensure the conver-
gence of the multigrid Poisson solver [2, 4].

The Self-Adaptive Multigrid Mesh

The self-adaptive multigrid algorithm is a new approach
for the construction of adaptive discretizations for space
charge calculations, recently implemented in the software
package MOEVE. This approach starts with a relatively
coarse grid and refines it according to a certain criterion.
In MOEVE, the τ -criterion is applied (see [3] and cita-
tions therein). Now, this algorithm has been implemented
in GPT.

In order to give a short overview of the method we have
to introduce some notations. The step sizes h and 2h refer
to the step sizes on the fine and the next coarser grid (usu-
ally with double mesh size), respectively. The operators
I2hh and ̂I2hh denote different restriction operators. For the
numerical tests of the next section the injection was cho-
sen for ̂I2hh and the full weighting restriction for I 2h

h . The
τ -criterion is based on the so-called (h,2h) relative trunca-
tion error τ 2h

h with respect to the restriction operators I 2h
h

and ̂I2hh . It is defined by

τ2hh := L2h
̂I2hh uh − I2hh Lhuh . (3)

By means of the refinement criterion a hierarchy of lo-
cally refined grids can be generated. The self-adaptive
multigrid scheme is given as follows:

Algorithm: Self-Adaptive Multigrid

1. Start on a relatively coarse mesh.

2. Perform a few multigrid cycles on equation (2).

3. Calculate τ2hh .

4. Add mesh lines locally, where |τ 2h
h | > ε.

5. Proceed from 2. as long as |τ 2h
h | > ε.

Main advantages of this approach are that the generated
hierarchy of meshes now matches the hierarchy of meshes
of multigrid and the values τ 2h

h are provided directly by the
multigrid algorithm.

RESULTS

In this section we are going to discuss some test cases
in order to compare the adaptive GPT mesh and the self-
adaptive multigrid scheme. Hereby, the investigation of el-
lipsoidal particle distributions allows the measurement of

the CPU time as well as the calculation of the numerical er-
ror. We study short and long bunches, which usually pose
a problem to the Poisson solvers. Next, the performance
of the two adaptive discretization methods are tested with
simulations for the rf gun of the European XFEL.
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Figure 1: Adaptive GPT mesh for an ellipsoidal particle
distribution with c = 10.0 mm. The plotted values are the
potential at y = 0.0 m in the (x,z)-plane.
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Figure 2: Self-adaptive multigrid mesh for an ellipsoidal
particle distribution with c = 10.0 mm. The plotted values
are the potential at y = 0.0 m in the (x,z)-plane.

Ellipsoidal Particle Distributions

First, the two different adaptive algorithms were ap-
plied to bunches of ellipsoidal shape with 100,000 uni-
formly distributed macro particles. The equatorial radii
(transversal plane) were given with a = b = 1 mm and
the polar radius (longitudinal direction) with c = 0.1 mm,
1.0 mm, 10.0 mm. The bunch had a total charge of Q
=1 nC. Self-adaptive multigrid was started with a coarse
grid of 17× 17× 17 mesh points. This coarse grid was re-
fined iteratively with ε = 0.5. For the error of the solution
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Table 1: Performance for ellipsoidal particle distributions:
the adaptive GPT mesh and the self-adaptive multigrid
mesh compared.

Nx ×Ny ×Nz error, E-field CPU time
ellipsoid with c = 1.0 mm

adaptive GPT mesh
59× 59× 59 2.96 · 10−2 1.06 s

self-adaptive multigrid
17× 17× 17 1.02 · 10−1 0.48 s
31× 31× 31 3.43 · 10−2 0.62 s
49× 51× 51 2.37 · 10−2 0.76 s

ellipsoid with c = 0.1 mm
adaptive GPT mesh

59× 59× 65 2.17 · 10−1 1.09 s
self-adaptive multigrid

17× 17× 17 3.13 · 10−1 0.41 s
26× 26× 25 2.32 · 10−1 0.66 s
42× 42× 35 2.16 · 10−1 0.53 s

ellipsoid with c = 10.0 mm
adaptive GPT mesh

61× 61× 59 1.09 · 10−1 1.06 s
self-adaptive multigrid

17× 17× 17 1.85 · 10−1 0.50 s
31× 31× 26 1.17 · 10−1 0.50 s
43× 43× 42 1.06 · 10−1 0.75 s

the analytical values of the electric field E were compared
to the numerically calculated values at the positions of the
particles.

Table 1 represents the results for the two adaptive grids
described above. It turns out that the same error as on the
adaptive GPT mesh is achieved on the self-adaptive multi-
grid mesh but with less mesh lines. Consequently, the so-
lution process requires less CPU time. Figure 1 and 2 show
the adaptive GPT and the self-adaptive multigrid discretiza-
tion, respectively.

The RF-Gun of the XFEL

The simulation of the rf gun for the XFEL were per-
formed according to the parameters given in the technical
design report [5]. The bunch had a charge of 1 nC and
a radius of 1.5 mm. The temporal distribution was mod-
elled as a flat top shape with 20 ps full width at half max-
imum (FWHM) and a rise and fall time of 2 ps. The par-
ticles of the bunch were started at the cathode and tracked
0.28 m downstream through the one and a half cell cav-
ity (1.3 GHz, normal conducting with an accelerating field
of 60 MV/m at the cathode) and the solenoid field (max-
imum field of 0.2 T centered at 0.4 m from the cathode).
For self-adaptive multigrid the following parameters were
set: 9×9×9 mesh points for the coarsest grid and ε = 0.5.

Table 2 represents the CPU time of the simulations for
the two different adaptive discretization schemes. It can be
observed that the self-adaptive multigrid method requires
less CPU time with increasing number of macro particles.

Table 2: Performance of the simulations for the rf gun of
the XFEL: the adaptive GPT mesh compared to the self-
adaptive multigrid mesh.

� of macro particles adaptive mesh CPU time
100,000 GPT 971 s

MG 938 s
200,000 GPT 1815 s

MG 1299 s

CONCLUSIONS

The construction of grids is a crucial task for the ef-
ficient application of the particle-mesh method for space
charge calculations. In this paper we compared two dif-
ferent approaches for the construction of adaptive grids.
The numerical test cases showed that the adaptive multigrid
method generates meshes with less mesh lines, but the so-
lution achieves the same accuracy than on the adaptive GPT
mesh. The main advantage is that the construction process
fits into the multigrid scheme. Hence, the new algorithm
is more robust. The simulations for the rf gun of the Eu-
ropean XFEL have shown an improvement with respect to
CPU time for increasing number of macro particles.
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