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Abstract 
Beams of charged particles usually reach their 

stationary state by the development of a halo. Halo 
formation is in fact a macroscopic transcription of 
microscopic instabilities acting inside the beam over its 
constituent particles. Previous works have investigated 
individually the role of the initial envelope mismatch and 
of the magnitude of inhomogeneity in halo formation. 
However, it is clear that in real implemented beams both 
act together. In this sense, the main purpose of this work 
is to consider now concomitantly both effects. As a final 
product of the investigation, a particle-core model is 
presented. The agreement with full self-consistent ܰ-
particle beam numerical simulations is satisfactory and 
the results provided by the model seem to be more 
compatible with that would be expected experimentally. 

I TRODUCTIO  
Completely homogeneous beams evolve inside the 

magnetic focusing structures with no emittance growth. 
The beam constituents cannot individually couple and 
then be excited by macroscopic oscillations such as that 
from the envelope. Particles orbits stay limited to the 
beam boundary established by the envelope and halo is 
not formed. Emittance is a macroscopic quantity 
associated with the beam heating [1]. 

However, this is not the case of initially 
inhomogeneous beams. In such systems, particles can be 
expelled from the beam core due to the breaking of 
density waves [2][3][4]. If the beam envelope is 
mismatched, these ejected particles can be continuously 
driven by its oscillations and the system directs to its 
equilibrium with a progressive halo formation [5][6]. 

Although for cold and regular inhomogeneous beams 
the time scale of halo formation can be adequately 
predicted by the time with which the first density wave 
breaks, for quasi-homogeneous or thermal beams this is 
not possible. Particle jets are pretty less prominent and 
particles, instead of in groups, leave the beam 
individually. In this situation, it is interesting to describe 
the interaction between particles and the whole beam [7]. 

The purpose of this work is to develop a particle-core 
approach for an initially mismatched and inhomogeneous 
beam. The beam evolves in a linear channel and is 
surrounded by a conducting pipe. 

THE MODEL 
As mentioned before, for practical purposes, the beam 

has been considered azimuthally symmetric. In this 

situation, the beam spatial behavior can be enough 
described by the transversal radial coordinate ܴ. Also, for 
convenience, the initial beam density has been supposed 
parabolic in the form 

݊௕(ܴ, (ݏ = ቐ ௕ܰݎߨ௕ଶ + ߟ ቈ ௕ܰݎߨ௕ଶ ቆ2ܴଶݎ௕ଶ − 1ቇ቉ , 0 ≤ ܴ ≤ ,௕0ݎ ௕ݎ < ܴ ≤ ௪ݎ (1)

in which envelope ݎ௕ and the magnitude of 
inhomogeneity ߟ can be a function of time/axial 
coordinate ݏ. 

Since the interest resides on the oscillations of ݎ௕ and ߟ, 
one primary step to achieve the goal is to determine the 
transversal Lagrangian ܮ of the beam. In this way ܮ = න ℒ௥್(௦)

଴ ݊௕(ୄ܀௢)݀ୄ܀௢ (2)

where ୄ܀௢ is the radial coordinate that formally explores 
the beam transversal section and ℒ = 12 ܸଶ − 12 ௭௢ܴଶߢ + ܳ(ܴ௢) ln(ܴ) (3)

is the transversal Lagrangian of a beam ring initially at 
coordinate ܴ(ݏ = 0) = ܴ௢. ݇௭௢ is the coefficient of 
magnetic focusing, a constant for the purposes of this 
work. Important to emphasize: the transversal Lagrangian ℒ pertains to a ring with radius ܴ௢ while ܮ refers to the 
whole beam. 

The equation (3) contains two quantities that have to be 
determined. One is the beam velocity profile ܸ, which 
should be a function of radial coordinate ܴ and accounts 
how each beam ring evolves with the time ݏ. The other is 
the dimensionless fraction of charge ܳ(ܴ௢), which 
specifies the charge trapped by a Gauss’ surface at ܴ = ܴ௢. 

By the use of the continuity equation, one can 
determine the beam velocity profile ܸ, which can be 
formally written as ୄ܄ = − ௕ܴ݊ߨ௥2܍ න ݏ߲߲ ݊௕݀(4) .ୄ܀

The dimensionless fraction of charge ܳ(ܴ௢) is defined in 
the form ܳ(ܴ௢) = − ௕ܰ௕ܭ න ݊௕(ୄ܀௢ᇱ ఼೚଴܀௢ᇱୄ܀݀(  (5)

in which ୄ܀௢ᇱ  is just an auxiliary variable to perform the 
integration. Inserting the initial beam density of equation 
(1) into equation (4) and (5), one respectively obtains for 
the beam velocity profile ܸ = 12 ሶߟ௕ݎ) − ௕ሶݎߟ4 )ܴଷ + ሶ௕ݎ௕ଶݎ2−) − ሶߟ௕ଷݎ + ௕ଷݎ−ܴ(ሶ௕ݎߟ௕ଶݎ2 − ௕ܴଶݎߟ2 + ߟ௕ଷݎ (6)

and for the fraction of charge 
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ܳ(ܴ௢) = ߟ ܴ௢ସݎ௕ସ + (1 − (ߟ ܴ௢ଶݎ௕ଶ  (7)

Observe that ܸ = ܸ(ܴ). 
With equations (4) e (5), the transversal Lagrangian ℒ 

of equation (3) for the beam rings is now completely 
determined. As consequence, equation (2) can be readily 
integrated. Proceeding in this way, it is found that ܮ = ,ߟ)ܮ ሶߟ , ,௕ݎ ሶ௕). (8)ݎ
The expression for the transversal Lagrangian ܮ is 
omitted for compactness. Observe that ܮ is a function of 
the magnitude of inhomogeneity ߟ and beam envelope ݎ௕. 
With the aid of the corresponding Euler-Lagrange 
equations, it is possible to obtain the following second-
order ODEs for envelope ݎ௕ e inhomogeneity ߟ ߟሷ = ,ߟ)ఎܨ ሶߟ , ,௕ݎ ሷ௕ݎ(ሶ௕ݎ = ,ߟ)௥್ܨ ሶߟ , ,௕ݎ ሶ௕) (9)ݎ

in which ܨఎ and ܨ௥್ are also omitted but known functions. 
In this way, equation (9) can be readily integrated by the 
usual numerical methods, and (ݏ)ߟ as well as ݎ௕(ݏ) can 
be determined. The results obtained for both quantities 
will be shown in the next section. 

As stated by Equation (1), the superficial beam density ݊௕ depends of just ݎ௕ and ߟ. To know how ݊௕ evolves 
with the time ݏ, it is possible to suppose that all beam 
dynamics is related with ݎ௕ and ߟ. Beam density ݊௕ is 
governed by both ݎ௕ and ߟ, which are functions obtained 
by the numerical integration of Equation (9). 

Since a model for the dynamical behaviour of the 
density ݊௕ has been developed, many macroscopic beam 
quantities can be promptly calculated. And between the 
many possible quantities, one of them is the emittance. 

Emittance has great interest in beam physics once it 
contains information about its kinetic energy. Essentially, 
the emittance ߳ is defined in the form ߳ = ට4(܄ۃଶୄ܀ۃۄଶୄ ۄ − ୄ܀ۃ ⋅ ଶ), (10)ۄୄ܄

in which the angle brackets ۃ  denotes phase space ۄ
average. 

While in breathing homogeneous beams emittance is a 
constant, in the current case it is not. Because ݎ௕ and ߟ are 
functions of ݏ, then the beam emittance ߳ is also expected 
to be dependant of the time ݏ. Through straightforward 
algebra, the following ODE is obtained for ߳ ݀݀ݏ ߳ଶ = − 118 ߟ)ߟ௕ଶݎ + ሶߟ(1  (11)

which is a function of the free parameters of the proposed 
model, that are the magnitude ߟ of inhomogeneity and the 
beam envelope ݎ௕. 

All the equations presented before, from (1) to (11), are 
associated with the collective and synchronized 
movement of the beam. In this way, the equations are 
adequate to describe just the particles that have a fluid-
like behaviour. However, many other particles 
desynchronize during the beam evolution inside the 
magnetic focusing channel. 

To describe these desynchronized particles, it is 
necessary to develop a model. The first population of 
particles, that which have a very organized macroscopic 
movement, can be identified as the beam core. Thus an 
adequate model is the one based on particle-core 
interactions. The core is adequately represented by ݊௕ and 
the particles can be supposed as test-particles. This 
particle-core model is described by the following 
equations ݀ଶ݀ݏଶ ܴ + ௭௢ܴߢ = (12) ,ܨ

in which ݇௭௢ܴ the magnetic focusing force and ܨ = ቐܭ௕ ቈߟ ܴଷݎ௕ସ + (1 − (ߟ ௕ଶ቉ݎܴ , 0 ≤ ܴ ≤ ௕ݎ , ܴ/௕ܭ௕ݎ < ܴ ≤ ௪ݎ , (13)

is the force applied by the core in each test-particle. 
Observe that ܨ = ,ߟ)ܨ ,௕ݎ ܴ) is nonlinear both inside and 
outside the beam. Then test-particles are nonlinear excited 
by the core and can, with great potential, exhibit a chaotic 
dynamics. 

RESULTS 
The figure 1 presents the solutions for (ݏ)ߟ e ݎ௕(ݏ) 

obtained with numerical integration for long times of 
equation (9) with specific initial conditions. Note that the 
dynamics of both quantities are coupled. 

 
Figure 1: Numerical solutions for (a) inhomogeneity (ݏ)ߟ 
and (b) envelope ݎ௕(ݏ). Initial conditions are ݏ)ߟ = 0) ݏ)ሶߟ ,0.1= = 0) = ݏ)௕ݎ ,0 = 0) = 1.2, and ݎሶ௕(ݏ = 0) = 0. 

Figure 2 shows the comparison between the model and 
self-consistent ܰ-particle beam numerical simulations for 
short times. Numerical simulations are based on Gauss’ 
Law: particles at ܴ suffer a resultant force that is due to 
the action of all particles comprised in the interval (0, ܴ). 
The beam macroscopic quantities compared are the 
envelope ݎ௕ and emittance ߳. 
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Figure 2: Comparison between the model and numerical 
simulations for short times. Beam initial characteristics 
are ߟ = 0.1 and ݎ௕ = 1.2. The results are for (a) envelope ݎ௕ and (b) emittance ߳. Numerical simulations employ ܰ = 10000 particles. 

Figure 3 presents the dynamics of a particle initially 
positioned inside the beam. The result in panel (a) is 
obtained with numerical simulations. In panel (b), the 
dynamics of a test-particle calculated with the particle-
core model is shown. The beam particle in Figure 3a has 
the same initial coordinates of the test-particle of Figure 
3b. Note that the model predicts reasonably the way with 
which the particles are ejected from the beam core. 

 
Figure 3: Radial coordinate ܴ(s) of a particle initially 
disposed at ܴ(ݏ = 0) = 1 (inside the beam) obtained with 
(a) numerical simulations and (b) the particle-core model. 
The results are for ߟ = 0.1 and ݎ௕(ݏ = 0)= 1.3. 

Finally, in Figure 4 the orbit of the beam particle and 
the test-particle under the action of ݎ௕ and ߟ are shown. 
Both particles are disposed inside the beam with same 
initial conditions such as the case of Figure 3. The orbits 
of Figure 4 have been obtained with cumulative Poincaré 
sections of the original (ܴ, ሶܴ ) particle orbit. Results in 
panel (a) are provided by numerical simulations and in 
panel (b) by the particle-core model. Very similar pattern 
is observed in both panels. 

 
Figure 4: Phase space orbit of a particle initially disposed 
at ܴ(ݏ = 0) = 1 (inside the beam). In (a) the results of 
numerical simulations and in (b) the results of the 
particle-core model. ߟ = 0.1 and ݎ௕(ݏ = 0) = 1.3. 
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