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Abstract

Compton sources are capable to produce intense beams
of gamma-rays necessary for numerous applications, e.g.
production of polarized positrons for ILC/CLIC projects,
nuclear waste monitoring. These sources need high current
of electron beams of GeV energy. Storage rings are able
to accumulate a high average current and keep it circulat-
ing for a long time. The dynamics of circulating bunches is
affected by large recoils due to emission of energetic pho-
tons. We report results of both an analytical study and a
simulation on the dynamics of electron bunches circulating
in storage rings and interacting with the laser pulses. The
steady-state transverse emittances and energy spread, and
dependence of these parameters on the laser pulse power
and dimensions at the collision point were derived analyt-
ically and simulated. It is shown that the transverse and
longitudinal dimensions of bunches are dependent on the
power of laser pulses and on their dimensions as well.
Conditions of the laser cooling were found, under which
the electron bunches shrink due to scattering off the laser
pulses.

INTRODUCTION - COMPTON RINGS

Compton rings are perspective bright sources of electro-
magnetic radiation ranged from hard x rays to gamma rays
due to their ability to store high current beams and keep
them circulating for a long time. With developing of the
lasers with high average power and optical resonators capa-
ble to accumulate high power and dense pulses, the intense
Compton sources are coming into play (see e.g. [1]).

The dynamics of circulating bunches is affected by large
recoils due to emission of energetic photons. With devel-
oping of the optical resonators storing the powerful high
density pulses, the beam behavior will be changed. The
report is aimed to present a survey of the results of theoret-
ical study on the beam dynamics in Compton storage rings.
The results are verified by the simulations.

Steady Parameters

Conservative Hamilton system (ensemble of oscillators)
holds occupied by particles phase volume conservative.
Thus, initial emittance preserved in time (saying nothing of
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its magnitude). To get the equilibrium specific emittance,
the system should open to externals: become nonconserva-
tive, [2, 3].

Perturbations of the conservative system in general can
be decomposed into (a) perturbation of the potential func-
tion, (b) excitation, and (c) damping. The equilibrium state
of the system (distribution in phase space) is settled due to
balance of excitation and damping.

Perturbed canonical equations have a form

ẋ = p ;

ṗ = −U ′
x(x) + F (p, t) . (1)

Here F (p, t) is a random function representing the re-
coils due to scattering off laser photons and emission of the
synchrotron radiation.

Both the longitudinal and transversal dynamics of circu-
lating particles may be reduced to the form (1). With the
random function dependence on the variables of the system
(multiplicative noise), the steady solutions to (1) may ex-
ist. This solutions govern with the momenta of the random
function F (p, t):

λ = lim
Δt→0

1

Δt

〈∫ t+Δt

t

F (p, t) dt

〉
;

S = lim
Δt→0

1

Δt

〈[∫ t+Δt

t

F (p, t) dt

]2〉
. (2)

The stationary solution to (1) is given by:

ρst(x, p) = N exp

(
−2α

S
H̃

)
, (3)

where N is the normalizing factor; α = dλ2/ dp|p=0;

H̃ =
p2

2
+ U(x) + λφ (4)

is the ‘averaged stochastic Hamiltonian.’ The last term in
(4) appears in the longitudinal dynamics only. It represents
the fact that in the Compton scattering the electron lost a
portion of its energy and never gain.

RESULTS OF ANALYTICAL STUDY

‘Linear’ Approach. Steady State

We considered a model of Compton ring with the colli-
sion point (CP) set in the dispersion–free section with min-
imum of the betatron functions. For a simple model of sel-
dom interaction of the electrons with a ‘wide’ laser pulse
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(uniform distribution of photons within the bunch volume),
and making use of the Fokker–Plank–Kolmogorovmethod,
the results are as follows (see [2]). Also we neglected the
last term in (4): the energy losses during the synchrotron
oscillation are negligible as compared with the separatrix
height (energy acceptance).

Partial energy spread – induced by Compton interac-
tions alone – reads (see [4]):

σ2
p =

7

10
γγlas , (5)

where σp ≡
√

〈(γi − γ)2〉
/
γ is a relative r.m.s. spread;

γi, γ are Lorentz–factors for individual electrons and for
the synchronous particle, resp.; γ las = Elas

/
m0c

2 the ra-
tio of the energy of the laser photon to electron’s rest energy
(the equivalent photon Lorentz factor).

Partial transverse emittances read as

εx,z =
3

10
β(CP )
x,z

γlas
γ

, (6)

with β
(CP )
x,z being magnitudes of the betatron functions at

CP.
The transverse rms dimensions of the bunch at CP cor-

responding to emittances (6) are

σ2
x,z =

β2
x,zγlas

3γ
. (7)

As it can be seen from the derived expressions, the lon-
gitudinal size of the bunches (squared) is proportional to
the energy of electrons, while the transverse sizes inversely
proportional to it. Also the transversal dimensions of the
bunch in CP are proportional to magnitude of the betatron
function in this point. It should be emphasized that Comp-
ton partial steady–state emittances are independent on the
intensity of Compton interactions.

‘Quantum’ Lifetime

The derived above density distribution (3) enables us to
determine the beam losses caused by fluctuational nature
of the Compton interactions. (The inverted loss rate is re-
ferred to as ‘quantum’ lifetime.)

Restricting the consideration to the case of a small aver-
age energy of scattered–off photons as compared with the
energy acceptance of the ring:

γ2γlas

√
2πηh

γγrf
� 1 .

Here η is the linear momentum compaction factor; h the
harmonic number; γrf = eVrf

/
m0c

2 the reduced rf volt-
age.

Relative ‘quantum losses’ rate is equal to:

τ−1
qf =

ω0nx

2π

√
9γrf

2πγηh
exp

(
− 3γrf
2πγlasγ2ηh

)
. (8)

Here nx is the average number of scattered–off photons
by each electron per turn, ω0 the frequency of bunches cir-
culation along the ring orbit.

Compton Interactions + Synchrotron Radiation

For a realistic case of the electron bunches which un-
dergo two independent perturbations – from the Compton
scattering and due to emission of the synchrotron radiation
– the emittances (and the squared energy spread as well)
are the weighted sum of the partial emittances, the Comp-
ton one (see above) and the synchrotron (i.e. natural) one:

εx,z =
εCwC + εsws

wC + ws
, (9)

where wC,s are the average losses of energy by the circulat-
ing electron due to specific process (partial energy losses).

If several perturbations act upon the bunch, the total
emittances become dependent on the excitation and damp-
ing caused by the specific processes.

Narrow Laser Pulse

For the laser pulses with nonuniform density distribu-
tion, the bunch steady–state emittances become dependent
on the laser pulse dimensions at CP. The gaussian density
distribution allows one to estimate reduction of the emit-
tances. It results from the implicit relation:

εx,z(σlas) = εunifx,z

I0(t
2/4)

[I0(t2/4) + I1(t2/4)]
, (10)

where εunifx,z is the transversal emittance (6); I0,1 are the
Bessel functions, t ≡ σx,z/σlas.

As it can be seen from (10), for the uniform laser pulse
(t � 1) emittance is equal to the linear one. For the ‘nar-
row’ laser pulses (t � 1) the emittance decreased twofold.
Equally, this result is applicable to the longitudinal emit-
tance (the spread or the bunch length) in the case of a short
laser pulse and non–head–on collision.

Intensive Laser Pulse

The presented above the ‘linear model’ represents sel-
dom electron–to–laser photons interactions: number of in-
teractions for the period of synchrotron oscillations � 1.
In this limiting case, the momenta of the random function
(2) are reduced to the momenta of the single interaction
multiplied by the average frequency of interactions. This is
not valid for the powerful laser pulses as in the gamma–ray
sources for positron production [5].

The beam dynamics changes due to the high power laser
pulses, two effects come into play.

First, the ‘losses’ term (last term in the stochastic hamil-
tonian becomes sufficient). It reduces the acceptance of the
ring and sufficiently increases the quantum losses exponen-
tially dependent on the acceptance. In the Fig. 1, there are
presented the phase plane of non–perturbingsystem and the
‘stochastic’ one. The ‘stochastic phase trajectories’ corre-
spond to the loops of equal density of electrons in the phase
space.

Second, the statistical properties of perturbations due
to Compton interactions are changed. These changes are
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Figure 1: Loops of equal particle density. The left corre-
sponds to non perturbing system, right subjected to inter-
actions with photons

rather interesting: Up to unity efficiency of interactions
per the synchrotron period, the dispersion of recoils rises
faster then the average losses. With higher efficiency (we
look in the future with desire of such a powerful lasers
and resonators to become available) the dispersion reduces
∼ n

−1/2
x . Since emittances are proportional to ratio of the

dispersion to the average losses, they will have maximum
at the efficiency of about unity per the synchrotron period.

CONCLUSION

The analytical model of the electron storage ring with
the laser cooling was elaborated. In the model, the colli-
sion point where circulating electrons collide with the laser
photons is set in the dispersion–free section of the orbit.
The betatron functions in this point have extremal (mini-
mal) values.

Extensive simulations verified the main results of the an-
alytical study. In particular, the energy spread from simu-
lations is equal to the predicted one, with the predicted de-
viations both due to the power and the dimensions of the
laser pulse, see Fig.2 and Fig.3.

It is noteworthy that considering the laser–induced kinet-
ics of the bunches, we get Robinson’s sum rule for the laser
cooling: the longitudinal decrement is twofold as much as
the transverse ones. Also, the longitudinal decrement obeys
the known relation: it equals to ratio of the losses to the
energy of circulating electrons. Robinson’s sum rule for
Compton cooling from the simulations coincides with the
predicted fairly well.

To meet the conditions for effective laser cooling, the
power in the laser pulse should be limited to amount which
produces the scattering rate nx � 0.1. Also the smallest
attainable laser pulse dimensions at CP (nonlinear cooling)
are desired.

Figure 2: Simulated energy spread in Compton gamma–ray
ring vs. time.

Figure 3: Ratio of the steady-state squared mean spread to
the theoretical one vs. the conversion factor (number of
scattered off laser photons per pass through CP).
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