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Abstract

Collimators and transitions in accelerator vacuum cham-
bers often include small-angle tapering to lower the wake-
fields generated by the beam. While the low-frequency
impedance is well described by Yokoya’s formula (for ax-
isymmetric geometry), much less is known about the be-
havior of the impedance in the high frequency limit. In
this paper we develop an analytical approach to the high-
frequency regime for round collimators and tapers. Our
analytical results are compared with computer simulations
using the code ECHO.

INTRODUCTION

The impedance of small-angle axisymmetric tapers with
perfectly conducting walls was first computed analytically
by Yokoya in the limit of low frequencies [1]. In this limit
the longitudinal impedance is purely imaginary, which
means that the beam does not lose energy to radiation.
Later works [2, 3] generalized Yokoya’s approach for rect-
angular and elliptical cross sections of the transitions. In
the opposite limit of very high frequencies a so-called op-
tical model has been developed [4, 5] which predicts a real
longitudinal impedance. Simulations show, however, that
there is a large range of frequencies between Yokoya’s the-
ory and the optical impedance where both theories fail to
provide an accurate result. In this paper we address this in-
termediate regime between the two limiting theories. This
paper uses the method developed in an earlier paper by one
of the authors [6], which attempted to solve this problem,
but failed to take into account the effect of mode transfor-
mation in transition regions.

In this paper we consider the geometry of an axisym-
metric collimator shown in Fig. 1. It consists of two iden-
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Figure 1: Geometry of an axisymmetric collimator.

tical conical tapers of length l connected by a section of a
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cylindrical waveguide of length g. The radius of the pipes
outside of the collimator is b1, and the radius of the pipe be-
tween the tapers is b2. We use cylindrical coordinate sys-
tem r, z, φ with the origin of the coordinate z situated in
the middle of the collimator. The system is then symmetric
with respect to reflection in the plane z = 0. The radius of
the collimator b(z) as a function of z is defined by

b(z) =

{ b2, 0 < |z| < g
2 ,

b2 + (b1 − b2)
|z|−g/2

l , g
2 < |z| < l + g

2
b1, |z| > l + g

2 .

(1)

Throughout this paper we assume that the angle of the
collimator α is small, α = arctan(b1 − b2)/l ≈ (b1 −
b2)/l � 1.

We assume that a beam propagates along the axis of the
collimator at the speed of light. Our goal is to calculate the
longitudinal impedance of the collimator.

THE METHOD

We use a method of eigenmodes, in which the electro-
magnetic radiation field of the beam is represented by a
sum of modes of the empty waveguide. It is based on calcu-
lation of the energy radiated by the image currents induced
by the beam in the walls of the waveguide. In the absence
of other losses, the radiated energy is equal to the energy
loss of the beam and can be related to the real part of the
impedance. The imaginary part of the impedance can then
be found using the Kramers-Kronig relations between the
imaginary and real parts of the impedance.

The detailed description of the method is presented else-
where [7]; here we limit ourselves to a brief outline of our
approach.

The Fourier component of the beam current is (we as-
sume the e−iωt time dependence in what follows)

Iω = I0e
ikz , (2)

where ω stands for frequency, I0 is the amplitude of the
current harmonic and k = ω/c. Let us denote the time-
averaged intensity of radiation of this current from the col-
limator region by Pω . The real part of the impedance is
then given by the following relation (see, e.g., [8])

ReZ(ω) =
2Pω

I20
. (3)

The radiation is due to the image currents induced in the
perfectly conducting walls in the taper regions where the
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walls are not parallel to the z-axis. It is convenient to rep-
resent the total electric field of the beam inside the taper
as a sum of the vacuum field, Evac, and the radiation field
Erad, E = Evac +Erad, where for an on-axis beam

Evac = r̂
2I0
rc

eikz , (4)

with r̂ being a unit vector in the radial direction of the
cylindrical coordinate system.

The radiation field E rad satisfies Maxwell’s equation
with the boundary condition that requires the tangential
component of the total electric field on the wall to vanish
Erad

t |wall = −Evac
t |wall. Inside the waveguide, the radia-

tion field excited by the wall currents can be represented as
a sum of eigenmodes,

Erad =
∑
n

anE
+
n , (5)

where an is the amplitude andE+
n is the electric field of the

n-th eigenmode, propagating in the positive direction of the
z axis. A similar expansion in terms of the amplitudes an

is also valid for the magnetic field. Note that in general
case, the sum in (5) also includes modes E−

n propagating
in the backward direction [9]. However, in the limit of high
frequency, the modes that make a dominant contribution to
the impedance propagate in the forward direction, and the
backward propagating modes can be neglected.

Having found the modal expansion coefficients an at the
exit from the collimator z = g/2 + l, (see [7] for de-
tails), we can determine the spectral power of radiation
Pω =

∑
n Pn|an|2, where Pn is the energy flow in the

n-th mode of unit amplitude. This in turn allows us to find
the impedance, as given by Eq. (3).

To calculate the excitation of electromagnetic field by
the beam, one needs to know the eigenmodes of the com-
plete waveguide. Analytical expressions for eigenmodes
are available for cylindrical and conical waveguides, how-
ever, there is no a compact expression for eigenmodes of
a collimator shown in Fig. 1. Moreover, a single conical
mode that propagates in the left taper of the collimator,
experiences transformation at the transition to the straight
central section, generating several modes in the cylindrical
waveguide. Each of these modes, in turn, experiences a
transformation at the second transition from the cylindrical
waveguide to the right taper, resulting in multiple conical
modes in the right taper.

For calculation of the longitudinal impedance one only
needs axisymmetric TM modes. In the cylindrical central
part of the collimator, the modes propagating in the positive
direction, E+

n ,H
+
n , are given by the familiar equations

E+
z,n =

j2n
b22

J0

(
jn

r

b2

)
eiφn(z)

E+
r,n = − ijnkn

b2
J1

(
jn

r

b2

)
eiφn(z)

H+
φ,n = − iωjn

b2c
J1

(
jn

r

b2

)
eiφn(z) (6)

where n is the mode index, n = 1, 2, . . ., J0 and J1 are
the Bessel functions, jn is the n-th root of J0, and kn =
(ω2/c2 − j2n/b

2
2)

1/2. The phase of the mode is equal to
φn(z) = knz.

Analytical expressions for eigenmodes of the electro-
magnetic field are also available for conical geometry (see,
e.g., [9]). In the general case of arbitrary cone angle α
and arbitrary frequency ω, they involve the Legendre and
Bessel functions. In the limit of high frequency, it turns
out that only the modes that propagate at small angles to
the axes of the system make a dominant contribution to
the impedance (so called paraxial approximation, see [11]).
We use a simplified version of these functions valid in the
limit of small angle α and high frequency ω. In this limit,
the conical eigenmodes (which we mark by the tilde below)
are similar to the cylindrical ones, and, in our cylindrical
coordinate system, they can be written as follows

Ẽ+
z,n =

j2n
b2

J0

(
jn

r

b

)
eiφn(z)+ikr2/2R(z)

Ẽ+
r,n = − ijnk

b
J1

(
jn

r

b

)
eiφn(z)+ikr2/2R(z)

H̃+
φ,n = − iωjn

bc
J1

(
jn

r

b

)
eiφn(z)+ikr2/2R(z), (7)

where the phase φn is now determined from the differen-
tial equation dφn/dz = [ω2/c2 − j2n/b(z)

2]1/2. The factor
R(z) in the above equations is the curvature radius of the
spherical wavefronts of the modes in the conical regions;
it is equal R(z) = [arctan b′(z)/b(z)]−1 ≈ b(z)/b′(z).
Note that due to the linear dependence of b(z) in the ta-
pers, b′ = const. The sign of R is important: it is neg-
ative in the left taper, corresponding to converging wave-
fronts of the modes, and is positive in the right taper, where
the wavefronts are diverging from the center of the col-
limator. For the phase φn(z) in (7) we have φn(z) =∫ z

0

[
ω2/c2 − j2n/b(z

′)2
]1/2

dz′.
The small angle of the collimator, as was pointed out in

[6], allows one to neglect the reflection of eigenmodes at
the transitions between the cylindrical and conical regions.
However, it does not preclude mode transformation at these
transitions, and we will account for this below.

NUMERICAL RESULTS

The impedance calculation algorithm described above
was implemented in Mathematica [12]. For illustration
purposes we have chosen the following collimator geom-
etry: l = g = 3 cm, b1 = 2b2 = 0.5 cm, so that the
collimator angle is α = 4.7 degrees. Real part of the
impedance computed from the beam pipe cutoff, f c =
j1c/2πb2 = 46 GHz, up to the frequency fmax = 3.9
THz is shown in Fig. 2 in solid blue. At higher frequen-
cies this impedance approaches the optical model value,
Zopt = (Z0/π) log(b1/b2) = 83Ω.

While our algorithm directly finds only the real part of
impedance, we can find the imaginary part by making use
of causality, that relates imaginary and real parts of the
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Figure 2: Collimator impedance: present theory is shown
with solid line, the results of simulations with ECHO are
shown with dots.

impedance via the Hilbert transforms (Kramers-Kronig re-
lations) [8]. To proceed, we need to define Re Z for all
frequencies, so we set it to zero below fc, and set it equal
to the optical model value above fmax. Im Z calculated
by the Hilbert transform of this Re Z is shown in Fig. 2 in
solid red. Below the cutoff frequency it ends up very close
to the Yokoya value. For comparison, we plot impedances
calculated from a Fourier-transformed wakepotential of a
σz = 20 μm Gaussian bunch computed by the code ECHO
[13]. One can see a very good agreement between our ap-
proach and the ECHO results.

Since our algorithm allows one to accurately find the
impedance over a very broad frequency range, we can use
inverse Fourier transform to reconstruct the wakepotential
of a short bunch. For instance, for a Gaussian bunch with
rms length σz = 100 μm we obtain the wakepotential
shown in Fig. 3, plotted with the ECHO result for com-
parison. Again, we observe a perfect agreement between
the two.
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Figure 3: Wakepotential of a σz = 100 μm bunch.

Finally, in Fig. 4 we present the loss factor and the max-
imum absolute value of the wakepotential as a function
of bunch length. As we expect from the optical model,
for short bunches, both quantities scale as σ−1

z , while in

the opposite, Yokoya regime, |W (s)|max ∝ σ−2
z and the

loss becomes exponentially small. In the intermediate re-
gion (roughly 2 magnitude orders in σz with corresponding
changes of 3 or more orders in magnitude in |W (s)|max

and kloss) the scaling is more complex, and, to our knowl-
edge, it is not described by any existing analytical treat-
ments. Our new approach comfortably fills this gap.
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Figure 4: Loss factor and maximum of the wakepotential.

In conclusion, we developed a novel analytical approach
to find the impedance of (small angle) tapered collima-
tors in axially symmetric geometry. Impedance can be
found over a very broad frequency range, from DC to high-
frequency optical model limit, thus allowing one to recon-
struct the wakepotential of short bunches. We note that this
algorithm is also applicable to convex (cavity-like) struc-
tures, and, with some modifications, small angle require-
ment can be dropped. Extension to 3D geometries will be
investigated in the future.
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