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Abstract

The SPS kickers are major contributors to the SPS trans-
verse beam coupling impedance. The current ”flat cham-
ber” impedance model for a kicker is obtained by apply-
ing form factors to the theoretical impedance of an ax-
isymmetric ferrite beam pipe. This model was believed to
be acceptable for the vertical dipolar impedance, as two-
wire measurements on SPS kickers revealed a satisfactory
agreement. However, one-wire measurements on PS kick-
ers suggested that this model underestimates the kickers’
transverse quadrupolar (detuning) impedance. The longitu-
dinal and transverse dipolar impedances of another kicker
model that accounts for the metallic plates on each side of
the ferrite were derived in the past by H. Tsutsui. The same
formalism is used in this paper to derive the quadrupolar
impedance. These formulae were then successfully bench-
marked to electromagnetic (EM) simulations. Finally, sim-
ulating the interaction of an SPS bunch with the improved
kickers’ model results in a positive horizontal tune shift,
which is very close to the tune shift measured with the SPS
beam.

INTRODUCTION

The vertical dipolar impedance computed with the flat
chamber model was successfully benchmarked to 2 wire
impedance measurements up to 1 GHz for an SPS MKE
kickers [1]. The dipolar vertical impedance in this fre-
quency range is expected to be the most critical as far as
SPS single bunch transverse stability is concerned. How-
ever, this flat chamber model obtained from Zotter/Métral
theory [2] with Yokoya factors [3] can not explain the neg-
ative total horizontal impedance measured on a PS kicker
with a single wire in a certain frequency range [4]. In fact,
using Yokoya factors, the total horizontal impedance can
only be positive or zero. As a consequence, E. Métral sus-
pected that the actual quadrupolar horizontal impedance
should be larger than the dipolar horizontal impedance in
absolute value [5], and pointed at the fact that this flat
chamber model does not take into account the vertical
metallic plates on each side of the ferrite blocks. Ear-
lier, in order to refine the cylindrical model for the kick-
ers, H. Tsutsui had already derived a field matching the-
ory to obtain the longitudinal [6] and transverse dipo-
lar [7] impedance of a geometrical model with vertical
metal electrode plates described in Fig. 1 for an ultrarel-
ativistic beam. In these references, his theoretical dipolar
impedance calculations were compared to HFSS simula-
tions and subsequently to measurements of PS and SPS
kickers in Refs. [4], [8] and [9]. It would be interest-

ing to be able to use this impedance formalism to gener-
ate transverse wake functions that could be imported into
HEADTAIL. In his paper [7], H. Tsutsui only derived the
transverse dipolar impedances. In this paper, we derive the
quadrupolar impedance from the source and EM fields ob-
tained for the calculation of the longitudinal impedance in
[6].
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Figure 1: Geometric models for theoretical impedance
calculations: cylindrical model (left), flat chamber model
(center), model that accounts for perfect conducting plates
on both sides of the ferrite plates (right).

IMPEDANCE DERIVATION

H. Tsutsui computed the fields in the vacuum region
(y < b and x < a) (Eq. (17) in Ref. [6]):
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(1)

with kxn = (2n+1)π
2a , where Z0 = μ0c is the vac-

uum impedance. The time and longitudinal dependences
exp (jω (t − z/c)) are omitted. Full derivations of EM
fields in similar rectangular waveguide models loaded with
dielectric slabs are given in Refs. [10] and [11].

QUADRUPOLAR TRANSVERSE IMPEDANCE OF
SIMPLE MODELS OF KICKERS

TUPD055 Proceedings of IPAC’10, Kyoto, Japan

2054

05 Beam Dynamics and Electromagnetic Fields

D05 Instabilities - Processes, Impedances, Countermeasures



Horizontal Quadrupolar Impedance

At coordinate (x, y) = (ξ, 0), fields Ex and Hy in the
vacuum region can be written

Ex(ξ, 0) =
∑

n

jk

kxn
An sin (kxnξ) ,

Z0Hy(ξ, 0) = j
∑

n

((
kxn

k
+

k

kxn

)
An +

kxn

k
Bn

)

× sin (kxnξ) .
(2)

The horizontal detuning impedance per unit length is then
obtained from the EM fields at (x, y) = (ξ, 0) for the
source current I0 at (x, y) = (0, 0) given in Eq. (16) of
Ref. [6]:

Zquad
h

L
=

j

I0ξ
(Ex(ξ, 0) − Z0Hy(ξ, 0))

=
1
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(3)

with

Tn =
1

kxn
k (1+μrεr)sh ch+

kyn
k (μrsh2tn−εrch2ct)

μrεr−1 − k
kxn

sh ch

(4)
where we have sh = sinh (kxnb), ch = cosh (kxnb),
tn = tan [kyn (b − d)], ct = cot [kyn (b − d)] and k2

xn +
k2

yn = k2(εrμr − 1). The boundary conditions (Eq. (19)
in Ref. [6]) are valid and we have used the expression of
(An + Bn) given in Eq. (21) and (27) of Ref. [6]. We fi-
nally choose a small displacement ξ so that we can write to
first order:

Zquad
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k
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It is interesting to note that the horizontal quadrupolar
impedance at small transverse positions for each hybrid
waveguide mode number is simply given by the longitu-

dinal impedance multiplied by a factor −k2
xn

k .

Vertical uadrupolar mpedance

Similarly, the vertical detuning impedance can be ob-
tained. At coordinate (x, y) = (0, ξ), fields Ey and Hx

in the vacuum region can be written
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∑
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The vertical detuning impedance per unit length is obtained
from the EM fields at (x, y) = (0, ξ) for the source current
I0 at (x, y) = (0, 0).
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We choose a small displacement ξ is so that we can write
to first order:
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In this case, we observe that Zquad
v = −Zquad

h , as was also
expected by Tsutsui [12].

CASE OF AN SPS MKE KICKER

The dipolar and quadrupolar impedances in both planes
are presented in Fig. 2 for a single SPS MKE kicker
(MKE.61651). From this graph, we can conclude that
impedance contributions can not be related by simple
Yokoya factors. Also, looking specifically at the low fre-
quency imaginary impedance, we observe that quadrupo-
lar impedances are larger than dipolar impedances in each
plane, inverting completely the picture obtained from the
flat chamber model. The importance of the quadrupolar

0 0.5 1 1.5 2 2.5 3 3.5 4
5

4

3

2

1

0

1

2

3

4

5
x 105

Frequency in GHz

Im
pe

da
nc

e 
in

 Ω
 /m

MKE.61651    Tsutsui’s theory Zdip
x

Zdip
y

Zquad
x

Zquad
y

Figure 2: Dipolar and quadrupolar impedance in both
transverse planes for SPS kicker MKE.61651. Real parts
are full thick lines, imaginary parts are thin and dashed.

contribution is confirmed when summing all the kickers
in the SPS. In fact, summing the dipolar and quadrupo-
lar imaginary contributions in the horizontal plane yields
a large negative horizontal impedance at low frequency,
which could explain the positive tune shift observed in
the SPS in the horizontal plane. The total dipolar and
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quadrupolar wake functions can be obtained through in-
verse Fourier Transform of the dipolar and quadrupolar
impedance contributions. These wake functions are given
in Fig. 3 together with the wake functions obtained with
the flat chamber model in [13]. We see again the larger
quadrupolar contributions in Tsutsui’s model compared to
Zotter/Métral’s model, and we observe that their effect ex-
tends to trailing charges at larger distances from the source
charge.
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Figure 3: Total dipolar and quadrupolar wake functions
in both transverse planes for all SPS kickers for Tsutsui’s
model.
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Figure 4: Total dipolar and quadrupolar wake functions in
both transverse planes for all SPS kickers for the flat cham-
ber model.

These analytical calculations have also been successfully
benchmarked to CST Particle Studio 3D simulations of a
simple model of kicker (right sketch in Fig. 1), and also
to a more recent flat chamber theory in the limit for which
the distance between the metal plates goes to infinity [15].
These simulations are described in detail in [14]. Finally,
simulating the interaction of an SPS bunch with this new
kickers model results in a positive horizontal tune shift,
which lies within 10% of the tune shift measured with the
SPS beam [13].

CONCLUSION

The formalism of Tsutsui was used to derive the
quadrupolar impedance of a simple model of kicker. These
formulae were successfully benchmarked to 3D EM simu-
lations and could explain the positive tune shift measured
with the SPS beam. However, the good agreement between
the flat chamber model and bench measurements on an SPS
MKE kicker proves us that Tsutsui’s model is not yet a fully
satisfying model for this case. As a consequence, the sim-
ple geometric model presented by Tsutsui and studied here
is now being worked on so that 3D simulations can be per-
formed with more realistic features (geometry, external cir-
cuits, metallic shielding, longitudinal cell structure, etc.).
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