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Figure 2:  Comparative simulations of active (red traces) and passive (blue traces) compensation of the chicane for high 
intensity beams.  The left and central images show the time evolution the horizontal and vertical normalized emittance, 
respectively. The right image shows the accumulated losses. 

SIMULATIONS 
All simulations presented have been carried out with 

ORBIT [5], a code written to simulate H- charge exchange 
injection and beam dynamics with direct space charge 
effects. Transverse space charge effects are estimated 
with the so-called 2.5D approach. 

The lattice properties evolve with time during the fall 
of the chicane. Thus, a special procedure, making use of 
an undocumented feature of ORBIT allowing redefining 
magnet parameters, has been used to implement this time 
dependence of the lattice. The chicane BS magnets have 
been modelled as bending magnets (and not thin elements 
as the weaker dipoles generating the painting bump) in 
order to properly simulate their impact on the lattice. As a 
consequence the reference trajectory in the injection 
section evolves during the fall of the chicane and the 
positions of fixed apertures defined w.r.t. this reference 
trajectory changes with time as well. 

To simulate as realistically as possible the envisaged 
painting scheme and, in particular, the complex energy 
modulation and chopping scheme [6], initial macro-
particle distributions at injection are generated in a 
dedicated program and provided on files for ORBIT runs. 

Apertures have been implemented around the Booster 
at locations where losses are expected to occur. A 
300 μg/cm2 C foil has been included* to take transverse 
blow-up due to multiple scattering into account. 

All simulations have been carried with 500 000 macro-
particles and have been running on around 20 cores.  

RESULTS 

High Intensity Beams 
Simulations for both active and passive compensation 

were carried out for the injection, followed by the fall of 
the chicane and up to 20 ms assuming 1.6 1013. The 
painting bump fall time and the initial offset between the 
injected beam and the closed orbit with bumps were 
adjusted to obtain normalized rms emittances of ε*

x=12 
µm rad and ε*

y = 7 µm rad. For passive compensation, 
only best results obtained with a large pole-face rotation  
                                                           
*Now, the foil thickness is expected to be about 150 to 200 μg/cm2 and, 
thus, multiple scattering has been overestimated in the simulations. 

 
Figure 3: Tune footprint after 20 ms for the simulation  of 
a high intensity beam. 

angle of 64 mrad (i.e. the BS magnets are almost sector 
bend during injection) are presented.  

The evolutions of the normalized rms emittances and of 
the accumulated losses are shown in Fig.  2. The 
normalized emittances decrease with time; this can only 
be explained by a reduction of phase space density close 
to the boarder of the acceptance due to blow-up and 
losses. Most losses take place during injection and 
chicane fall; Losses are reduced significantly with active 
compensation. Note that simulations with imperfect active 
compensation setting the additional quadrupolar 
components to the 90% and 110% of their nominal values 
yielded only slightly increased losses. 

The tune foot prints shown in Fig. 3 are similar for both 
cases with tune spreads up to about 0.5 at low energy.  

LHC type high brightness beams 
The LHC nominal beam intensity is 3.25×1012 protons per 
PSB ring at 1.4 GeV extraction (2 bunches per ring) 
assuming lossy transmission to LHC. The full intensity is 
injected in 20 machine turns; the required normalized 
beam emittances at PSB extraction are ε*

x,y = 2.5 µm rad, 
which are obtained by adjusting the painting bump fall 
time and a vertical offset of the arriving beam. For 
simulations with passive compensation, the pole face 
rotation angle of 64 mrad is used for the passive 
compensation. Fig. 4 shows the emittance evolutions 
along with the accumulated losses. Losses, shown in 
addition as well in Fig. 5, are, as expected, smaller than 
for high intensity beams. With passive compensation,  
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Figure 4:  Comparative simulations of active (red traces) and passive (blue traces) compensation of the chicane for LHC 
type beams.  The left and central images show the time evolution the horizontal and vertical normalized emittance, 
respectively. The right image shows the accumulated losses. 

 

Figure 5: Instantaneous losses during the simulation up to 
20 ms for a simulation of LHC beams. 
losses occur mainly at the beginning of the simulation 
until completion of the chicane fall. Further losses around 
turn 4000 (present as well for high intensity beams, but 
less visible due to the higher loss rates in general) for both 
passive and active compensations, are caused by particles 
not captured into the RF bucket then drifting towards an 
aperture restriction. 

Fig. 6 shows emittance evolutions for a longer duration 
of about 100 ms corresponding to acceleration up to 
317 MeV. Surprisingly, the blow-up rates do not decrease 
significantly due to the increase in beam rigidity. It is not 
clear to which extent this may be caused by numerical 
artefacts, e.g. due to an insufficient number of macro-
particles or the vertical tune, which is not lowered as 
programmed for the real machine. 

CONCLUSIONS AND OUTLOOK 
Performance expected from the CERN PS Booster with 

Linac4 under different assumptions to deal with 
perturbations introduced by the injection chicane, 
required for the H- charge exchange injection, have been 
assessed by simulations. Loss rates and emittance blow-
up rates around injection and fall of the chicane are 
significantly larger than the ones later without 
perturbations. These observations indicate that loss and 
blow-up rates around injection and chicane fall are 
dominated by effects to be expected in the real machine.  
With both compensation schemes and for both high 
intensity and high brightness LHC type beams, acceptable 
loss and blow-up rates are obtained with an injection 
working point just above a half-integer resonance. Losses  

Figure 6: Evolution of the transverse rms emittances up to 
about 100 ms (i.e. 317 MeV) for LHC beams simulation. 
with active compensation, even with imperfect setting of 
the compensation, are significantly lower than the ones 
with passive compensation. 

Next steps are the introduction of imperfections, both 
caused by multipolar components created by the new 
hardware to be installed and machine imperfections and, 
injection matching and painting optimizations. 
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