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Abstract
Invariants of linear equations of motion generated by 

second and higher order moments of a beam distribution 
function are presented in this report. 

INTRODUCTION
Courant-Snyder invariant and Root Mean Square 

(RMS) beam emittance are well-known invariants of 
linear equation of motion. They are connected with the 
second order moments of a beam distribution function. 
Other invariants of linear equations of motion generated 
by second and higher order moments are presented in this 
report. 

SECOND ORDER INVARIANTS 
Considering 2D problem let us introduce the vector 
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TTT YYxxxxY =′′= , where superscript T

defines transpose vector or matrix, prime denotes 
derivative with respect to distance s along the beam 
trajectory. In the linear approximation the components of 
vector Y satisfies to matrix equations: 
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Here En (n=1) is unit matrix of n-th order, b1,2 are square 
matrix of n-th order defined by electromagnetic fields [1]. 
It should be noted that for motion in longitudinal 
magnetic field representation of the matrices A1,2 in form 
(1) is valid in coordinate frame rotating with Larmor’s 
frequency around the longitudinal axis. 

The second order moments M of the beam distribution 
function f are defined in accordance with formula: 
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Here N is number of particle per unit beam length, 
integration in (2) is fulfilled over all phase space occupied 
by particles. In accordance with system (1) matrix M
satisfy the equation [1]: 
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The well-known invariants of the system (3) are RMS-
emittances 2,1ε  [2,3] for both transverse degrees of 

freedom: 
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The RMS-emittances (4) are the determinants of 

matrices T
kkYY . It may be shown that the determinant 

12Δ of matrix TYY 21  is also constant along the beam 

trajectory [4]: 
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Each vector kY  defines the invariant kI :
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Here superscript “-1” denotes inverse matrix. The 
expression (6) is analog of Courant-Snyder invariant. 
Indeed, by introducing Twiss’s parameters according to 
formula: 
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it can be reduced to standard form: 

constxxxx kkkkkkk =+′+′ 22 2 γαβ   (8) 

The pair of vectors ( 21,YY ) produce the “coupling” 

invariant: 
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which coincides with (6) in the case 12 YY = .

HIGHER ORDER INVARIANTS 

Higher moments of the distribution function )(
11
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where indices ki  vary from 1 to pN , are introduced 

according to the definition (2): 
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Here pN  – is the phase space dimension. In accordance 

with the formula (10) the total number of moments of 
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order n is n
pN . Not all of them are independent, since the 

product )(
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is symmetric with respect to any permutation of 
indices ki .

To resolve this uncertainty, only the independent 

products )(

21

n
iii n

Z of order n are taken into account. This 

means that the product )(

21

n
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Z can not be obtained from 

the other by any permutation of indices. To fulfil these 
conditions indices ki  must satisfy the system of 

inequalities: 
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Each product )(
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Z of order n with the sequence of 

indices satisfying the inequalities (12) can be put in one-
to-one correspondence with the number i:
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where 
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=  – are binomial coefficients. 

The number nN of independent products of order n

and, therefore, of the moments )(
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of order n in 

accordance with the formula (13) is: 
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The last formula may be proved by induction. The 
number Nn of moments of order n for the different 
dimensions of the phase space Np is given in Table 1. 

Table 1: Number of moments of order n

n Np = 2 Np = 4 Np = 6 
1 2 4 6 
2 3 10 21 
3 4 20 126 
4 5 35 252 
5 6 56 462 
6 7 84 792 

The dependence of components of tensor )(
21

n
iii n

Z  on 

distance s can also be studied by means of matrix 

formalism. Let us introduce the vector nY  of dimension 

Nn:
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which components are independent products (11,12). In 
the case of linear equation of motion vector nY  satisfies 

the system of equations: 

nnn YAY =′   ,  (16) 

where elements of ( nn NN × ) matrix nA  are linear 

combination of elements of matrix A  (3). For example, 
when Np = 2 matrix nA  has the following form: 
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In this case 1A  coincides with (1). 

The moments )(
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of order n are equal to: 
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and the equations for them coincide with the system (16). 
Each pair of vectors nY , mY define invariant nmI :
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Indeed, the moments of (n+m) order mnYY in accordance 

with the system (7) satisfies the following equations: 
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Using equations (16,20) is easy to show compliance of 
equality: 

0=′nmI   ,   (21) 

which implies the invariance of nmI . For n=m=1 formula 

(19) coincides with the Courant-Snyder invariant (6). 
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In the absence of damping in addition to the invariants 

(19) the values of the determinants nΔ  of matrices T
mnYY

are integrals of motion. The value of nΔ  varies along s

according to the equation: 
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where )( nATr  – is trace of matrix nA . In the absence of 

damping ( 0)( =nATr ) one can get: 

constn =Δ     (23) 

For n = 1 last formula defines conservation of beam 
RMS emittance. 
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