

Simultaneous Simulation of Multi-Particle and Multi-Bunch Collective Effects for the APS Ultra-Low Emittance Upgrade

M. Borland, T. Berenc, L. Emery, R. Lindberg

Michael Borland
Associate Division Director
Accelerator Systems Division
Advanced Photon Source

12th International Computational Accelerator Physics Conference Shanghai, October 2015

Outline

- APS upgrade ("APS-U") overview
- APS-U requirements
- Review of storage ring collective effects
- Modeling methods
- Review of predictions for single-bunch instabilities
- Results for multi-particle, multi-bunch simulations
 - Stability for uniform fills
 - Stability for non-uniform fills
 - Stability under loss of a bunch
 - Instabilities while filling the ring
- Plans and conclusions

Next-Generation Storage Ring X-Ray Sources

- High-brightness "4th generation" rings under development world-wide1,2,3,4,5
- Require very strong magnets with small bores
- Vacuum bore R much smaller
- Geometric and resistive wakefields scale like 1/R² to 1/R³
- Collective instabilities in 4GSRs must be carefully modeled and solutions anticipated

Courtesy C. Steier, ALS.

^{1:} S. Leemann et al., PRSTAB 12, 120701 (2009).

^{2:} L. Liu et al., IPAC14, 191 (2014).

^{3:} C. Steier, SRN 27, 19 (2014).

^{4:} L. Farvacque et al., IPAC13, 79 (2013).

^{5:} G. Decker, SRN 27, 13 (2014).

Multi-bend achromat lattice¹ for APS-U²

Betatron motion			
$ u_x$	36.205	95.125	
$ u_y$	19.272	36.122	
$\xi_{x,nat}$	-90.340	-138.580	
$\xi_{y,nat}$	-43.319	-108.477	
Lattice functions			
Maximum β_x	30.2	12.9	\mathbf{m}
Maximum β_y	27.8	18.9	\mathbf{m}
Maximum η_x	0.216	0.074	\mathbf{m}
Average β_x	13.2	4.2	\mathbf{m}
Average β_y	15.9	7.8	\mathbf{m}
Average η_x	0.148	0.028	\mathbf{m}
Radiation-integral-related quantities			
Beam energy	7	6	GeV
Natural emittance	2527.5	66.9	$_{ m pm}$
Energy spread	0.095	0.096	%
Horizontal damping time	9.7	12.1	$_{ m ms}$
Vertical damping time	9.7	19.5	$_{ m ms}$
Longitudinal damping time	4.8	14.1	$_{ m ms}$
Energy loss per turn	5.34	2.27	MeV
ID Straight Sections			
eta_x	19.5	7.0	\mathbf{m}
η_x	171.88	1.11	$_{ m mm}$
β_y	2.9	2.4	m
$\epsilon_{x,eff}$	3142.7	67.0	$_{ m pm}$
Miscellaneous parameters			
Momentum compaction	2.84×10^{-4}	5.66×10^{-5}	
Damping partition J_x	1.00	1.61	
Damping partition J_y	1.00	1.00	
Damping partition J_{δ}	2.00	1.39	

APS

MBA

^{1:} D. Einfeld et al., SPIES 2013, 201 (1993).

^{2:} M. Borland et al., IPAC15, 1776 (2015).

Planned APS-U operating modes

- Single-bunch on-axis swap-out injection
 - Each bucket is filled by a single shot from the injector
 - Accommodates small aperture, unusual insertion devices
 - Implies injection of 15 nC (4.2 mA) bunches
- Targeting 200 mA in various fill patterns
 - 324-bunch uniform
 - Desirable for long lifetime and highest brightness
 - Limit of present fast kicker technology
 - 48-bunch uniform
 - Desirable for timing experiments
 - Possible hybrid or non-uniform modes under study

Intrabeam scattering and Touschek lifetime

- Low emittance beams have high particle density in bunches, leading to
 - Emittance growth due to intrabeam scattering (IBS)
 - More rapid particle loss due to Touschek scattering
- Counter-measures
 - Many weak bunches
 - Running with "round beams," i.e., $\kappa = \varepsilon_y / \varepsilon_x \approx 1$
 - Bunch-lengthening using a higher harmonic cavity (HHC)

Computations from TAPAs, tinyurl.com/borlandTAPAs

APS-U requirements drive modeling goals

- Requirement: single-bunch intensity limit >4.2 mA
 - Modeling must specify required chromaticity
 - Modeling must assess microwave instability
 - → Modeling must guide vacuum system design, choice of materials
- Requirement: multi-bunch instabilities absent or controlled by feedback
 - Modeling must specify feedback requirements
 - → Modeling must guide choices related to cavity HOM damping, may impact choice of materials
- Requirement: Flexibility, reliability, and fault tolerance
 - → Modeling must assess robustness of operating modes
 - → Modeling must assess impact of likely faults
- Requirement: bunch lengthening to mitigate scattering
 - → Modeling must predict bunch distributions with passive HHC
 - → Modeling must determine impact of HHC on instabilities

Review of impedances & wakefields in electron storage rings

- Impedances/wakefields characterize how electrons interact with each others' electromagnetic fields in the ring
 - Geometric wakefields are generated by changes in the vacuum chamber cross section
 - Resistive wall wakefield is due to the finite conductivity of chamber walls
- Resonances (e.g. HOMs) are a special case of geometric wakefields

	Longitudinal	Transverse	
Effects due to short-term wakefields	Heating of vacuum chamber	Source of orbit change	
	Bunch lengthening	Tune shift	
	Microwave instability	Transverse instabilities	
Effects due to long-term wakefields	Heating of cavities	Heating of cavities	
	Multi-bunch instability	Multi-bunch instability	
Most worrisome effect(s)	Single bunch rf heating	Single bunch stability at 4.2 mA	
	Multi-bunch stability		

Simulation tools

- Computation of geometric wakes
 - GdfidL¹
 - ECHO²
- Computation of cavity modes
 - URMEL³
 - Measurement
- Tracking with collective effects
 - Parallel version of ELEGANT^{4,5}
 - All features described are in the present release
- Post-processing and visualization
 - SDDS⁶
 - ImageMagick

1: W. Bruns, Linac 2002, 418.

2: I. A. Zagorodnov et al. PRSTAB 8, 042001.

3: T. Weiland, NIM 216, 329 (1983).

4: Y. Wang et al., PAC07, 3456.

5: M. Borland et al., IPAC15, 549.

6: R. Soliday et al., PAC03, 3473.

Simulation of short-range wakes

- Short-range wakes produce intra-bunch effects, e.g.,
 - Head-tail instability
 - Microwave instability
- APS-U simulations include
 - Resistive wakes from analytical expressions
 - Longitudinal monopole wake
 - Transverse dipole wakes
 - Geometric wake potentials
 - Longitudinal wake
 - Transverse dipole and quadrupole wakes
- Used in ELEGANT via impedance formalism
 - FFT-based convolution of time-dependent charge-weighted moments of beam distribution with the wake potentials
 - ZLONGIT and ZTRANSVERSE elements in ELEGANT

Example of a short-range wake (ECHO)

CAD model of flange absorber

ECHO model for wakefield calculations

APS-Upgrade short-range impedance model

- Total wakefield/impedance found by summing over all contributions weighted by the local beta function
- Single-bunch tracking can be used to assess
 - Microwave instability
 - Single bunch intensity limit

Impedance elements used in model

Resistive wall			C	Geometric contributions			
			Sector (×40)		Ring		
Metal	Diameter	Length	Element	Number	Element	Number	
Cu	22 mm	224 m	Regular BPM	12	Injection kicker	4	
ΑI	22 mm	605 m	ID BPM	2	Extraction kicker	4	
SS	22 mm	80 m	ID transition	1	Feedback	2	
ΑI	6 mm	50 m	Bellow	14	Stripline	1	
ΑI	6×20 mm	125 m	Flange	52	Aperture	2	
ΑI	140 mm	20 m	Crotch absorber	2	Fundamental cavity	12	
			In-line absorber	12	Rf transition	4	
			Gate valve	4	4 th harmonic cavity	1	

R. Lindberg et al., IPAC15, 1823-1825.

Microwave instability simulation convergence

- Studied convergence for 48 bunches
- ~10k particles per bunch are needed for stable results
 - With 48 bunches, at least 0.5 M particles total
- Implications for subsequent computations
 - Must track 20k-30k turns to assess stability
 - Upwards of 10¹⁰ particle-turns per simulation
 - Strongly motivates use of lumped-element modeling

Single bunch current limit predicted to be safely above 4.2 mA

- Higher-harmonic cavity (HHC) increases limit by ~0.5 mA if $\xi \le 4$
- At higher chromaticity, the limit is dominated by losses at injection

Bench-marking with present-day APS

- Modeling of single-bunch effects for existing ring uses the same approach
- Agreement with experiment is good¹
- Several successful predictions of effects of changes
 - Reduced intensity limit after adding several ID chambers
 - Variation of intensity limit with beta function changes²

^{1:} R. Lindberg et al., IPAC15, 1823.

^{2:} V. Sajaev, PAC13, 405.

Long-range non-resonant wakes

- Resistive wall effects can extend over many bunches and turns
- Modeled using LRWAKE element in ELEGANT
 - Time domain computation
 - Point-bunch approximation
- For APS-U simulations, wakes extended over 10 turns (37 μs)
 - Include longitudinal wake and transverse dipole wakes

Resonant wakes

- Resonances have both intra- and inter-bunch effects
- We include only cavity modes
 - Characterized by frequency, Q, and shunt impedance
 - RFMODE and TRFMODE elements for single monopole and dipole modes
 - FRFMODE and FTRFMODE for multiple modes from a file
- Implemented using fundamental theorem of beam loading and phasors
 - Modes driven by time-dependent charge-weighted moments of each passing bunch
 - Phasor rotation and damping used to advance fields
- For APS-U, use this method to include
 - Passive HHC (RFMODE)
 - 120 parasitic monopole modes in main cavities (FRFMODE)
 - 168 parasitic dipole modes in main cavities (FTRFMODE)
 - 12 beam-loaded, generator-driven main cavities with feedback

Monopole HOMs expected to drive longitudinal instability

- HOM frequencies not well known, so must study statistically.
- Curves show 8 possible cases (offset for clarity)
- Without feedback, longitudinal instability is likely
- Landau damping from HHC present, but doesn't resolve this.

Coupling of Rf Feedback and Beam Dynamics¹

- Rf system feedback changes the cavity impedance seen by the beam
 - Can affect stability
- The RFMODE element accepts voltage and phase setpoints for a feedback system
- Feedback is configured by user-supplied IIR filters
- APS-U simulations use filters that emulate existing APS systems

Other simulation components

- Bunch-by-bunch feedback
 - Longitudinal and transverse pickup and driver elements
 - TFBDRIVER computes kicks using FIR filter to process TFBPICKUP signals
- Beam transport
 - ILMATRIX used for single-element simulation of ring lattice
 - Includes chromaticity and nonlinear momentum compaction
 - SREFFECTS used for single-element simulation of synchrotron radiation damping and quantum excitation
- Output data
 - Bunch-by-bunch, turn by turn particle data, histograms, moments
 - Feedback pickup and driver data
 - Data from rf cavity modes and feedback
 - Written using parallel I/O to SDDS files¹

FIR feedback with DC gain gives stability

- Longitudinal bunch-by-bunch feedback can stabilize beam
- Must have gain at DC because of suppression of synchrotron tune by the HHC
- Not a typical configuration for longitudinal feedback

Simulations of operational scenarios

- We've simulated four operational scenarios
 - 1) Idealized, uniform 48-bunch fill
 - 2) 1+45 hybrid (or "camshaft") fill
 - 3) Uniform 48 bunch fill after one bunch gets lost due to swap-out failure
 - 4) Filling the ring from zero
- Used typical set of "randomized" HOMs
 - Expect longitudinal instability if no feedback
 - Expect transverse stability even if no feedback
 - High coherent damping rate from chromaticity and short-range wake

1: 48-bunch uniform fill pattern

- Questions to answer
 - Is the beam stable without transverse feedback?
 - If not, what drives instability?
 - What are feedback requirements?
- "Quiet start" is important
 - Ramp simulated beam current from 0 to 200 mA in ~5000 turns
 - About 1 damping time
 - Sufficient time for rf feedback to respond
 - Wait ~7000 turns for full equilibriation
 - Give longitudinal and transverse kicks to the beam
 - Assess stability
 - Observe damping/growth rates

Horizontal instability w/o transverse feedback

- See unexpected instability in horizontal plane
- Anticipated that chromaticity would suppress this
 - Beam loss begins before the beam is kicked
 - Noise is sufficent to seed instability

Show movie #1

Colors show data for a selection of the 48 bunches

Long-range resistive wall instability

- FFT of bunch motion shows a line at 1-v_x
 that grows as instability builds
- Characteristic of long-range RW instability¹
- Confirmed by absence of instability if this component is removed
- Conclusion: transverse feedback not optional, unlike APS today

Feedback effort for quiet conditions

2: Nonuniform fill mode: 1+45

- Predict main rf voltage transient
 - ~8 μs filling time of main cavities coupled with slow rf feedback
- Bunches slew in phase
 - Considerable variation in bunch shape
 - HHC voltage is reduced

Can limit LFB effort to some degree

- ELEGANT can "cap" the feedback effort to simulate amplifier limitations
- A 1.8 kV cap is consistent with stability
- 0.6 kV is adequate for 48U

3: Impact of a lost bunch (failed swap-out)

- Swap-out uses very fast kickers to extract one bunch and inject a replacement
- What if replacement fails to arrive?
- Simulated using a kicker to kill one bunch after equilibriation
- Without adequate longitudinal feedback strength, beam is lost
- Suspect involvement of two monopole HOMs
- Strength needed is ~3x higher than for 1+45 pattern

Black: 1.8 kV LFB cap

Red: 6 kV LFB cap

Variation voltage and bunch phase

- Simulations show slewing of bunches in time
- Results from sawtooth voltage variation in main rf cavities
- Bunch length also varies due to variation in phase in the harmonic cavity

4: Filling from zero

- We must inject one full-current bunch into each target bucket
 - Will this work?
 - What feedback effort is needed?
- Simulated this using a "balanced" fill order
 - Intended to reduce sawtooth variation of rf voltage
- Simulations inject one bunch every 5000 turns or 18 ms
 - Interval is far shorter than in reality
 - More than a damping time in horizontal, longitudinal planes
 - About the same as the rf feedback response time
- This simulation relies on ELEGANT's SCRIPT element
 - Allows arbitrary modification of a beam with an external program/script

Losses occur for first injected bunch

- Need transverse feedback strength of >50 nrad to prevent beam loss
 - Level depends on number of particles, converges for ~100k
- Indicated ~300 V for a bunch-by-bunch system <u>not</u> challenging¹
 - Interesting to explore instability assuming feedback is more limited

Head-tail instability at injection (50nrad)

- Head-tail instability driven by horizontal dipole wake
- Bunch-length oscillations due to initial longitudinal mismatch appear relevant

Show movie #2

Instability suppressed by bunch lengthening

- As HHC voltage builds, longitudinal injection mismatch is reduced
- Bunch length no longer oscillates dramatically
- Peak currents reduced, as are wakefields

Show movie #3

NB: simulations with 10 kP

Black: bunch 0 (bucket 0); HHC voltage ~0

Red: bunch 24 (bucket 1242); HHC voltage ~400kV

Plans

- Model for existing ring needs enhancement
 - Refine measurements of existing-cavity HOMs
 - Extend model to include long-range wakes, HOMs
 - Add simulation of existing bunch-by-bunch feedback
 - Bench-mark tracking studies with measurements
- APS upgrade
 - Refine impedance model
 - Iterate with vacuum engineers to reduce longitudinal impedance
 - Add long-range resistive quadrupole wakes
 - Use refined data for cavity HOMs, add HHC HOMs
 - Study feedback requirements more thoroughly
 - Sensitivity to number of simulation particles
 - Sensitivity to simulated readback noise

Conclusions

- Simulation of collective effects for an APS upgrade are well advance
 - Short- and long-range resonant and non-resonant impedances included
 - Full multi-bunch, multi-particle per bunch tracking
 - Beam and rf feedback systems
- Single-bunch limit is comfortably above required 4.2 mA
 - Initial injection requires transverse feedback to suppress head-tainstability
- Multi-bunch instabilities must be suppressed with feedback
 - Longitudinal instability from cavity HOMs
 - Transverse instability from long-range resistive wall
 - Longitudinal feedback is challenging when swap-out fails
- Plan to improve model for existing ring and extend bench-marking

