ABSTRACT AND MOTIVATION

Nb_3Sn is one of the most promising alternative materials to niobium for applications in SRF cavities. With its high critical temperature of about 18.5 K and superheating critical field $B_{sh} \approx 400 \text{ mT}$, Nb_3Sn provides potential major improvements for both applications currently being investigated in the SRF community, high gradient accelerators as well as high-Q cavities with significantly reduced operating costs. Recent results with cavities have demonstrated R_s values of about 27 nΩ at 4.2 K far beyond the fundamental limit of niobium [1].

The RF properties of a sample prepared by Cornell University were characterized using the HZB Quadrupole Resonator. In this contribution we present surface resistance and RF critical field measurements.

THE SAMPLE

QPR sample before coating:
- Pure Nb sample allows high T treatments (Nb_3Sn coating, N doping/infusion, …)
- UHV compatible at RT and in LHe
- Opportunity for additional temperature sensors
- Exchangeability between QPRs at CERN and HZB

QPR sample after coating with Nb_3Sn
- Residual resistance 4 nΩ
- RF critical field 220 mT

New sample holder design
- Connection with titanium screws and indium wire gasket
- Pure Nb sample allows high T treatments (Nb_3Sn coating, N doping/infusion, …)
- UHV compatible at RT and in LHe
- Opportunity for additional temperature sensors
- Exchangeability between QPRs at CERN and HZB

SURFACE RESISTANCE

- Calorimetric measurement of RF surface resistance
- Extended parameter space (frequency, temperature and RF field)

RF CRITICAL FIELD

Single pulse measurement, quench field from peak P_{quench}

$B_{\text{sh}} = 190 \text{ mT}$

At $T < 15 \text{ K}$ deviation from linear fit due to RF heating

Literature:
- $B_{\text{sh}} = 400 \text{ mT}$
- $B_{c1} = 25 \text{ mT}$

\Rightarrow Critical field far above B_{c1}

NEW SAMPLE HOLDER

Up to now
- Niobium sample brazed into stainless steel flange

\Rightarrow No heat treatments of sample assembly possible (few hundred °C max.)

Workaround: Electron-beam weld on niobium part after treatment

\Rightarrow Possible impact on relevant material properties of the sample

REFERENCES