HIGHER ORDER MODES DAMPING IN 9-CELL SUPERCONDUCTING
CAVITY WITH GROOVED BEAM PIPE*

A. M. Bulygin, R. Donetskiy, Ya.V. Shashkov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute),
Moscow, Russia

Abstract
This paper is focused on higher order modes (HOM)
damping efficiency analysis in 9-cell superconducting
cavities with HOM couplers and with grooved beam pipe.
Comparison of two methods of HOM damping is
presented. In order to increase efficiency of damping of
trapped modes the end cells of the structure were
modified.

HIGHER ORDER MODES
A large number of modes in a broad frequency range
are induced by the beam passing through the structure [1].
The on-axis movement of the bunch leads to the
appearance of monopole modes, off-axis bunch also
excites multipole HOM (dipole, quadrupole, etc).

HOM leads to a number of negative factors: energy
losses, beam deflection from axis, additional heat load on
cryogenics, beam break up etc.

Electrodynamic characteristics (EDC), such as external
Q-factor (Q_{ext}) and shunt impedance R_{sh} are used to
evaluate the HOMs impact on bunch. Transverse shunt
impedance to the Q-factor ratio can be calculated either
through Panofsky-Wenzel theorem:

$$
\frac{R_{sh\perp}}{Q} = \left| \int_0^l \frac{1}{k_z} \frac{\partial E_z}{\partial r} e^{i k_z z} dz \right|^2
$$

where W-stored energy, k_z-wave number; or using direct
integration of transverse magnetic H and electric fields:

$$
\frac{R_{sh\perp}}{Q} = \left| \int_0^l \left(\cdot c \cdot \mu_0 \cdot H_z(z) + E_z(z) \right) e^{i k_z z} dz \right|^2
$$

For axially symmetric structures longitudinal field
derivative in (1) can be replaced by the difference, and
given that the longitudinal field dipole waves on the
structure axis are zero, the resulting expression will look
like this:

$$
\frac{R_{sh\perp}}{Q} = \left| \int_0^l \frac{1}{k_z} \frac{E_z}{\Delta r} e^{i k_z z} dz \right|^2
$$

In order to decrease their influence on the travelling
bunch it is necessary to decrease the HOM Q-factor
values. The most common method for HOM damping in
accelerating structure involves the coaxial couplers which
extracts HOM power to the external load. Despite the fact
that couplers provide a reasonable HOM damping they
are often of complicated design and could be subject to
multipacting discharge. Their presence also leads to break
of accelerating structure axial symmetry. Kick momentum
to the beam could be crucial for electron linear colliders,
energy recovery linacs and particle accelerators with high
beam current.

The resent progress allows applying complex
geometries of superconducting cavities to minimize the
effect of the HOMs [1-3]. Despite the very low achieved
Q-values of HOM their complex geometry can increase
the cost of cavity production. Several modifications of
simple structure with grooved beam pipe were
investigated in order to achieve the lowest values of HOM
Q-factor.

9-CELL CAVITIES WITH
CYLINDRICAL BEAM PIPES
In order to increase the HOM damping efficiency of
trapped modes in [4] the different radiuses of end cells
were used (Fig. 1(a)). This allowed increasing beam's
energy to 80-100 MeV. For the 9-cell cavity with
cylindrical beam pipes the field distribution for
operational mode at 1300 MHz was flattened by the
modification of the end-cells (Fig. 1(b)).

Figure 1: (a) Model of 9-cell cavity with cylindrical
beam pipes and (b) electric field distribution for
operational mode.

HOM EDCs were calculated for the 9-cell cavity with
cylindrical beam pipes in frequency range up to 3 GHz.
Dispersion curves (Fig. 2) helped to determine the most
dangerous HOMs.

The monopole mode TM_{011}, dipole modes TE_{111}, TM_{110}
and quadrupole modes TE_{211} and TM_{210} (Fig. 3) are of the
most concern for this structure. The EH_{111} mode is the
most “dangerous”, because its frequency (2576 MHz) is
nearly the double accelerating frequency (1300 MHz). It
means that EH_{111} can greatly impact on beam.

* This project is supported in part by the MEPhI 5/100 Program of the
Russian Academic Excellence Project

TUPB052

SRF Technology R&D

Cavity
9-CELL CAVITY WITH HOM COUPLERS

The variation of Tesla-type coupler [5] was used in order to estimate the values that could be achieved with this damping methodic (Fig. 3 (a)). Couplers are located at cylindrical beam pipes of 9-cell 1300 MHz superconducting accelerating cavity (Fig. 3(b)) at 115° degree between each other.

Comparison of the results for 9-cell cavity with HOM couplers (Fig. 3 (b)) with 9-cell cavity with cylindrical beam pipes (Fig. 1(a)), showed that Q_{ext} values for TE$_{111}$ and TM$_{101}$ and TM$_{011}$ modes are 100 times higher, 3 orders higher for quadrupole modes, and for EH$_{111}$ is nearly the same (Fig. 4 (a)). R_{sh} values for 9-cell cavity with cylindrical beam pipes 10 times higher for dipole modes and E_{020} wave, 2-3 orders higher for quadrupole waves and E_{011} wave. All the monopole dipole and quadrupole modes of 9-cell cavity with HOMs have R_{sh} values lower than 106 Ohm, except H_{211} wave (Fig. 4 (b), (c)).

9-CELL CAVITY WITH CORRUGATED BEAM PIPES

We are considering corrugated beam pipes for three different beam pipe radius d_{r1}: 39, 48 and 56.5mm (Fig. 5) from each side.

Figure 5: Nine-cell cavity with corrugated beam pipe (a), corrugated beam pipe geometry (b)

We consider 6 types of cavities with different drift tube radius. Three types are demonstrated the best results in HOM damping (Fig. 6).
Figure 6: Q_{ext} (a), shunt impedance R_{sh} (b) for HOM’s in 3 types of 9-cell cavity with corrugated beam pipe and different external radius d_{r1} (39, 48 and 56.5 mm). Results of EDC of three types of cavities with different radius d_{r1} comparison are summarized in Table 1.

Table 1: Comparison of 9 Cell Structure with Different Radius of Beam Pipe of End Cells

<table>
<thead>
<tr>
<th>d_{r1}-d_{r2}</th>
<th>39-39</th>
<th>56.5-56.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pros</td>
<td>Best results for damping of TE${111}$, TM${011}$, EH$_{111}$ waves.</td>
<td>Best results for damping of TM${110}$, TE${211}$, TM$_{020}$ waves.</td>
</tr>
<tr>
<td>Cons</td>
<td>Worst results for damping of TM${110}$, TE${211}$ waves.</td>
<td>Worst results for damping of EH$_{111}$ wave.</td>
</tr>
</tbody>
</table>

Asymmetrical 9-cell cavity with corrugated beam pipes and radius $d_{r1} = 39$ mm on one side and $d_{r2} = 56.5$ mm on another provides a good damping of HOM for all waves. The R_{sh} of 39-56.5 structure is lowest for EH$_{111}$ (56.5-56.5 has the highest R_{sh}) and TM$_{210}$ wave (39-39 has the highest R_{sh}).

Comparison of the results 9-cell cavity with cylindrical beam pipes (Fig. 7), showed that Q_{ext} values for TE$_{111}$ and TM$_{110}$ and 2nd monopole waves are four orders higher, and 6 orders higher for quadrupole modes. R_{sh} values for 9-cell cavity with cylindrical beam pipes 100 times higher for dipole modes, 2-3 orders higher for monopole waves, 6 orders higher for first quadrupole wave.

Comparison of the results with 9-cell cavity with HOM couplers (Fig. 8) showed that Q_{ext} values for waves TE$_{111}$ and TM$_{110}$ and 2nd monopole is two orders higher, 3 orders higher for quadrupole modes, 1 orders higher for 3rd dipole mode. R_{sh} values for 9-cell cavity with cylindrical beam pipes in 2 orders higher for dipole modes, 2-3 orders higher for monopole waves, 4 orders higher for first quadrupole wave, 1 order higher for 3rd dipole mode.

Figure 7: Q_{ext} (a), transverse shunt impedance R_{\perp} (b), long shunt impedance $R_{||}$ (c), for HOM’s in 9-cell cavity with cylindrical beam pipes and 9-cell cavity with corrugated beam pipe.
CONCLUSIONS

Asymmetrical 9-cell cavity with corrugated beam pipes and radius dr1 = 39 mm on one side and dr2 = 56.5 mm on another provides a good damping of HOMs for all modes. The R_{sh} of 39-56.5 structure is lowest for EH_{111} (56.5-56.5 has the highest R_{sh}) and TM_{210} wave (39-39 has the highest R_{sh}).

REFERENCES