Compact ERL Linac

Members for ERL Main linac
K. Umemori, T. Furuya, H. Sakai, T. Takahashi (KEK),
K. Shinoe (ISSP, University of Tokyo),
M. Sawamura (JAEA–ERL)

Members for ERL Injector
E. Kako, S. Noguchi, M. Satoh, T. Shishido,
K. Watanabe, Y. Yamamoto (KEK)
Compact ERL is a test accelerator to demonstrate performance needed for future 5-GeV class ERL X-ray light sources.

- Energy 60 – 200 MV
- Current 100mA
- Emittance 0.1〜1mm mrad

Superconducting cavities are key components to realize successful ERL operation.
Injector

Required parameters for injector linac cavity

- Frequency 1.3 GHz
- $E_{acc} = 14.5$ MV/m
- High current CW operation, 100mA

Accelerate up to $5 \sim 10$ MeV with three 2-cell cavities.

Input coupler should handle total of 1MW.

- Double feed for each cavity
- Input power: 167 kW/coupler

Harmful HOMs are suppressed with 4 or 5 HOM couplers for each cavity.

See poster TUPO056 by K. Watanabe
2-cell injector cavity

- Same cell shape with STF-BL cavity and slightly enlarged beampipe
- Two input port for each cavity
- Two types, loop and antenna, of HOM couplers are applied
- 4 or 5 HOM couplers per one cavity

Basic cavity Parameters for Injector at KEK

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>1.3</td>
<td>GHz</td>
</tr>
<tr>
<td>Number of Cell</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>R/Q</td>
<td>205</td>
<td></td>
</tr>
<tr>
<td>Operating Gradient</td>
<td>14.5</td>
<td>MV/m</td>
</tr>
<tr>
<td>Number of Input coupler</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Coupler power</td>
<td>167</td>
<td>kW</td>
</tr>
<tr>
<td>Coupler coupling</td>
<td>3.3×10^5</td>
<td></td>
</tr>
<tr>
<td>Number of HOM coupler</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>2</td>
<td>K</td>
</tr>
</tbody>
</table>
Results of 1st vertical test (2009.Apr)

- Eacc achieved to 30 MV/m.
- Heating of HOM probe at high Eacc

Could keep Eacc = 15 MV/m for 11 hours without HOM probe heating
Cryomodule (Input coupler, tuner)

- Design of cryomodule is almost completed.
- Input couplers will be tested this autumn with 300 kW klystron.
Main Linac

Required parameters for main linac cavity
- Frequency 1.3 GHz
- \(E_{\text{acc}} = 15 \sim 20 \) MV/m
- Energy recovery
- High current CW operation, >100mA

Due to CW high current operation, strong HOM damping is essential to avoid beam instabilities and large heat loads.

Total of eight 9-cell cavities are planned. To achieve 200MeV, 2-turn ERL is under discussion.
KEK-ERL model-2 Cavity

1) Cell shape is optimized to reduce HOM impedances
 - Iris diameter 80mm, elliptical shape at equator
 - Cell diameter 206.6mm
2) Eccentric-fluted beampipe
 - Suppress Quadrupole HOMs
3) Large beampipes mounted with RF absorber
 - Bempipe diameter 100mm and 120mm

Main parameters for the acceleration mode

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>1300 MHz</td>
<td>Coupling</td>
<td>3.8 %</td>
</tr>
<tr>
<td>Rsh/Q</td>
<td>897 Ω</td>
<td>Qo x Rs</td>
<td>289 Ω</td>
</tr>
<tr>
<td>Ep/Eacc</td>
<td>3.0</td>
<td>Hp/Eacc</td>
<td>42.5 Oe/(MV/m)</td>
</tr>
</tbody>
</table>
Results of vertical tests

- Maximum Eacc = 15 ~ 17 MV/m
- Eacc was limited by field emission
- Large X-ray signals were observed

Rotating mapping system

Array of Si PIN diode

See poster TUPPO055 by K. Umemori
Cryomodule development

- HOM damper
 - HIP ferrite of new-type IB004
 - Comb-type RF bridge
 - Making proto-type
 (See poster THPPO050 by M. Sawamura)

- Input coupler
 - Cold and warm window
 - HA997 ceramic is used
 - High power tests are in progress
 (See poster THPPO047 by H. Sakai)
Input coupler

- Principle parameters
 - Input power: 20kW (Max. \(E_{acc} = 20 \text{MV/m} \))
 - \(QL : 5 \times 10^6 - 2 \times 10^7 \) (Variable coupling)
- HA997 ceramic is used
- Test stand was constructed
- High power tests are in progress for the components, such as ceramics and bellows.

Basic design of input coupler
HOM damper

Low temperature measurement of RF absorber’s characteristics

- RF absorber should work at 80K
- Temperature dependence was measured while cooling with refrigerator

Ferrite μ'' at 80K

Temperature and frequency dependence of IB004 ferrite

- HIP ferrite of new-type IB004
- Comb-type RF bridge
- Making proto-type
Summary

Injector

- Two-cell injector cavity was fabricated.
- First vertical test was done and Eacc reached to 30 MV/m.
- While heating problem occurred at high Eacc, it was possible to keep 15 MV/m for 11 hours.
- Input couplers were fabricated and will be tested soon.
- Design of cryomodule is almost completed.

Main linac

- 9-cell Nb cavity was fabricated and vertical tests were performed. Cavity was suffered from field emission.
- X-ray mapping system works well and observed X-ray trace.
- Cryomodule design is under way.
- High power test stand was constructed. Component test is in progress for input coupler.
- Low temperature measurements were done for several RF absorbers. Making a prototype of HOM damper