Novel Characterization of the Electropolishing of Niobium with Sulfuric and Hydrofluoric Acid Mixtures

Hui Tian*

Advisors: Michael J. Kelley *, Sean Corcoran #, Charles Reece +

*+ Applied Science Department, College of William and Mary, Williamsburg, VA
+ Thomas Jefferson National Accelerator Facility, Newport News, VA
MSE Department, Virginia Tech, Blacksburg, VA

This work is supported by the US Dept. of Energy under grant DE-FG02-06ER41434
Three-Electrode-Setup Improved Electrochemical Characterization of EP

Example:
- $V_{PwrSup} = 15\, \text{V}$
- $V_{\text{cathode}} : \sim 4\, \text{V}$
- $V_{\text{electrolyte}} : \sim 2\, \text{V}$
- $V_{\text{anode}} : \sim 9\, \text{V}$

Cathode: Al I-V
Anode: Nb I-V

Not Power Supply Voltage
MSE: Mercury / Mercurous Sulfate Reference Electrode

Separating impacts of individual components in EP system.

Emables enlightening study of temperature, flow, and composition dependent effects (electrolyte) in detail.

T = 31.5 +/- 0.5 °C
Ref electrode is nearby Nb.
Reactive area = 5.72 cm2
Local Current Density Strongly Depends on Local Temperature

Past studies identified 25-35 °C for best EP gloss on Nb

For cavity EP, expect unstable temperatures when the electrolyte also serves as the process coolant, and particularly hot in no-flow condition and higher heat flux where flow rate is high, so non-uniform polishing effect is expected.
Anode Current Density Varies Linearly with HF Concentration

Different volume ratio of HF
HF (49%) & H₂SO₄ (96%)
1 : 9 ; 0.8 : 9.2 ; 0.6 : 9.4 ; 0.4 : 9.6 ; 0.2 : 9.8
Area ratio of Nb/Al = 10 : 1
T = 21.3 +/- 1.5 °C

Voltage (V) (vs. MSE)

Anode Current Density (mA/cm²)

Concentration of HF (by volume)

23.44 mA/cm²

5.27 mA/cm²

13th International workshop on RF Superconductivity
Beijing, China, Oct 14 ~ 19, 2007
What is Electrochemical Impedance Spectroscopy?

- Investigate the electrical dynamics of niobium-acid interaction during electropolishing.
- EIS: 10 mV variable-frequency ac superimposed on normal dc polarization voltage; record the impedance at the different frequency.

Nyquist Plot
- $\omega_{\text{max}} = \frac{1}{R_p C_{\text{dl}}}$
- $\omega = 0$
- $\text{arg} Z$
- Z_l
- R_p
- $R_s + R_p$
- $\text{Re} Z$
- $\text{Im} Z$

Equivalent Circuit of Nb-Acid Interface During EP
- R_p: Polarization Resistor
- R_{warburg}: Diffusion Resistor
- R_s: Solution Resistor
- C_{dl}: Capacitor of Electrode Surface
- Nb
- Ref. Elec.
EIS Study of Constant Current Density

Area Ratio of Nb/Al = 10 : 1
(Nb : 26.035 cm2; Al : 2.6035 cm2)
Ref electrode & Thermal Couple nearby Nb (< 5 mm)

Anode Current Density (mA/cm2)

Anode Potential (V)

$T = 21.5 \, ^\circ C$

$T = 5.5 \, ^\circ C$, along the plateau region @ different potential, No agitation
HF : H2SO4 = 1:9

R_p increases with the potential

R_s remains constant

$Z_{real} (\Omega)$

$Z_{imag} (\Omega)$

13th International workshop on RF Superconductivity
Beijing, China, Oct 14 ~ 19, 2007
EIS Study of different flow rates

Static (triangle) vs. Agitation (dot)
flow rate ~ 4 ~ 5 cm/sec
T = 9.2 ± 0.1 °C

Rs @ at different flow condition remains as constant
R_p decreases with increasing flow
What We have Learned from EIS Studies?

Constant R_s @ different potential regions and flow condition rules out the “porous salt film” model.

R_p ↑ @ different potential regions is inconsistent with the “adsorbates acceptor” model.

C_{dl} ↓ @ different potential regions & C_{dl} ↑ @ different flow conditions is consistent with the “compact salt film” model.

<table>
<thead>
<tr>
<th>Characteristic feature @ the high frequency</th>
<th>Salt Film Models</th>
<th>Adsorbates Acceptor Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>(* C = constant)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porous Film</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_s</td>
<td>R_p</td>
<td>C_{dl}</td>
</tr>
<tr>
<td>Different Potential (↑)</td>
<td>↑</td>
<td>C</td>
</tr>
<tr>
<td>Different Rotation (↑)</td>
<td>↓</td>
<td>↓</td>
</tr>
</tbody>
</table>

$T = 9.0 \pm 0.2 \degree C$

Without agitation

with agitation (flow rate: $v \sim 4 \sim 5$ cm/sec)
Sulfuric tends to anodize the Nb under polarization potential producing the "compact salt film"- "Nb$_2$O$_5$".

HF tends to dissolve the Nb oxide under kinetic control with the "at the surface" concentration of F$^-$.

F$^-$ concentration “at the surface” is limited by how fast it diffuses through the electrolyte - thus the plateau current.

The local gradient in F$^-$ concentration produces the desired polishing action.
Thank You
Preliminary Small Sample EIS Study for Implication

There is a signature difference in EIS response between rough and smooth surfaces. Potentially useful for on-line process feedback.

WEP04 "Surface Roughness Characterization of Niobium Subjected to Incremental BCP and EP Processing Steps"
H. Tian, et. al.

13th International workshop on RF Superconductivity

Beijing, China, Oct 14 ~ 19, 2007
Future Work on Small Sample EP

- EIS study with different concentration HF
- Monitor polishing effect with different concentration HF
- Monitor polishing effect with different flow rate
- Monitor polishing effect with different temperature electrolyte
- Simulation